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Sorenson, Colin B., M.A., May 2010   Economics 

A comparative financial analysis of fast pyrolysis plants in southwest Oregon 
 
Chairperson: Dr. Helen Naughton 

There are millions of acres of forestland in the Western United States that could benefit 
from fuel reduction treatments to improve forest health and reduce wildfire fuels. These 
treatments generate forest residues that are typically piled and burned.  However, with 
increasing concerns about energy security, high oil prices, air quality from pile burning 
and climate change, there is great interest in examining ways to economically use these 
residues as a renewable energy source. Pyrolysis of forest biomass is one method that 
shows promise, though the financial feasibility of doing so has not been previously 
investigated.  This study presents the expected financial performance of a mobile and a 
fixed pyrolysis plant in southwest Oregon, where stocks of forest biomass are high.  The 
tradeoffs between using a smaller plant deployed in the forest and a larger centralized 
plant are then discussed.   

 
Pyrolysis of forest residues involves using advanced technology to thermally degrade 
biomass in the absence of oxygen to produce bio-oil, biochar and syngas. The syngas is 
used entirely to provide thermal process energy for the pyrolysis system.  Bio-oil can 
substitute for #2 fuel oil in some applications or be upgraded to produce higher value 
products. Biochar can be used as a substitute for coal or a valuable soil amendment that 
can sequester carbon and improve desirable soil properties such as water and nutrient 
holding capacity.  

 
Information about costs, revenues and production rates for fast pyrolysis systems have 
been collected from existing pyrolysis firms and likely suppliers of goods and services to 
pyrolysis firms in Oregon.  Financial performance is estimated using a discounted cash 
flow analysis to determine net present value (NPV) and internal rate of return (IRR) for 
each plant.   

 
Benefits of an in-woods mobile plant include shorter biomass haul distances that 
contribute to a lower raw material input cost of $20 per bone dry ton (BDT), as opposed 
to $45 per BDT for the larger fixed-site plant.  The ability to operate separate from the 
electrical grid and re-locate multiple times per year gives flexibility to the mobile plant. 
Advantages of the fixed plant include cost savings from economies of scale and lower 
bio-oil delivery costs.  The baseline financial performance assessments for both plants are 
encouraging, with positive NPV and estimates of 7% and 21% IRR for the mobile and 
fixed plants, respectively.  Sensitivity analyses have revealed that financial performance 
is particularly dependent on initial capital costs, labor and feedstock costs, and projected 
bio-oil and bio-char prices.   
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Chapter 1 

Introduction 

 

1.1 Motivation for research 

Decades of fire suppression throughout the Western United States have created 

large areas of densely-stocked forests that could benefit from mechanical thinning to 

reduce wildfire fuels (Rummer et al. 2005).  Rapidly increasing greenhouse gas (GHG) 

emissions since the industrial revolution have led to climate-related environmental 

problems, largely from the burning of fossil fuels (IPCC 2007).  Due to erratic oil and gas 

prices, energy security through increased domestic renewable energy production has 

become a high priority (Perlack et al. 2005).  There is a growing desire for dynamic 

solutions to these problems which often require collaborative efforts from universities, 

government agencies and private firms.  In the forest products sector, pyrolysis of forest 

biomass for the production of bio-oil and biochar may be part of the answer.  However, in 

order for a course of action to be adopted its financial feasibility must be examined.     

Sustainable production of bioenergy through pyrolysis of forest biomass is a 

means of substituting away from fossil energy and meeting land management objectives.  

These objectives include decreasing wildfire fuels, reducing fire suppression costs and 

improving soils while addressing climate change issues.  A study by Perlack et al. (2005) 

found that native forest productivity creates 370 million dry tons of available biomass in 

the United States each year.  Pre-commercial thinning and fuel reduction forestry 

practices generate slash, or biomass, which is commonly either left to decay or handled 

via open burning. 
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Public land managers are required to remove biomass to reduce wildfire fuels, but 

methods of doing so can be cost-prohibitive due to the low value and high moisture 

content of the biomass, especially as biomass haul distance increases (Loeffler 2004; 

Silverstein et al. 2006).  Therefore, there is considerable interest in finding biomass 

removal and utilization methods that are financially viable.  This is the primary 

motivation for research on the potential for mobile in-woods pyrolysis and the tradeoffs 

between mobile and fixed-site systems.  Implementing a mobile pyrolysis system reduces 

feedstock haul distance, the largest factor in determining total feedstock cost, by allowing 

the system to be located near existing stocks of biomass.  Higher feedstock costs at fixed-

site pyrolysis plants are offset by economies of scale in the production process that allow 

more efficient use of inputs, especially labor.  The net effect of these tradeoffs on 

financial performance is quantified in this analysis.   

This research may serve as a guide for land management agencies considering 

various biomass utilization options, as well as prospective investors in the forest products 

industry.  The results and sensitivity analyses presented highlight the most important 

factors that determine financial feasibility of fast pyrolysis operations using forest 

biomass as feedstock.  While this study is based on pyrolysis plants in southwest Oregon, 

various parameter levels could be adjusted to apply the results to another region. 

 

1.2 Case study 

It has been stated that bio-oil can be economically produced in-woods and 

transported out of forests to end users (Badger and Fransham 2006).  This analysis 

investigates that claim in the context of southwest Oregon using existing data, expert 
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opinions, and cost estimates from likely providers of goods and services to a pyrolysis 

firm in the region.  Additionally, a discounted cash flow analysis (DCFA) has been 

conducted to highlight net present value (NPV) and internal rate of return (IRR) for two 

hypothetical pyrolysis plants with an expected operating life of 10 years—a fixed-site 

200 bone dry ton per day (BDTPD) plant located in Glide, Oregon and a mobile 50 

BDTPD plant that is assumed to relocate twice per year on public lands throughout 

southwest Oregon.  Payback period was also determined for each plant.   

I examine the financial feasibility of utilizing available biomass via pyrolysis and 

compare the performance of a 50 BDTPD mobile pyrolysis plant with a 200 BDTPD 

fixed-site plant.  The two systems are compared in order to quantify the tradeoffs 

between the economies of scale with the fixed plant and lower feedstock costs with the 

mobile plant.  Assumptions have been based on costs and geographic features of 

southwest Oregon, where biomass is particularly abundant. 

The southwest region of Oregon, centered at Roseburg, is the study area for this 

project.  As depicted in figure 1.1, the region has a high percentage of forest cover.  The 

area is mostly comprised of Douglas Fir and Mixed Conifer forests, much of which are 

now prone to intense wildfire due to management practices that have altered historic fire 

regimes (OFRI 2002).  Mechanical thinning, timber harvest, and restoration treatments 

generate substantial stocks of forest biomass each year, representing a large potential 

supply of bioenergy feedstock in the region (Cloughesy 2009).  However, due to the high 

cost of transporting slash, this biomass is typically disposed of via open burning.  In 

addition to the financial costs of open burning, social costs arise from particulate matter 

emissions that decrease air quality (ODEQ 2009).  Therefore, alternate biomass 



4 

 

utilization options with controlled emissions systems are attracting considerable interest.  

Pyrolysis is particularly intriguing because of the co-products it produces—bio-oil, which 

can substitute for liquid fossil fuels in certain applications, and biochar, which can be 

applied to the land to achieve desirable results such as carbon sequestration and increased 

soil fertility (Lehmann et al. 2006).  

 

Figure 1.1 Map of study region in southwest Oregon 

 
 
Source: Anderson (2010) 

 

 
For both systems in this study, I assumed in-woods chipping of the feedstock 

being transported to the pyrolysis plant.  A short feedstock haul distance was 

incorporated with the mobile plant financial model, which generated relatively low 

feedstock costs.  Conversely, the fixed plant feedstock will need to be sourced from a 
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larger supply region and transported a longer distance.   A two-phase feedstock haul was 

built into the fixed plant financial model.  The first phase is a short haul to a 

concentration yard in smaller-capacity trucks that can navigate narrow forest roads.  The 

second phase brings the feedstock the remainder of the distance to the plant in larger-

capacity chip vans, primarily on paved roads.  The two-phase haul produced significantly 

higher feedstock costs compared to the mobile plant feedstock costs on a per ton basis.   

The pyrolysis process being considered in this analysis involves “moving bed reactors,” 

shown in figure 1.2.  This technology is patented by Renewable Oil International, LLC 

(ROI), the industry collaborator on the project (Badger 2009c).  Production costs and 

pyrolysis system parameters were provided by ROI for a 50 BDTPD mobile plant and a 

200 BDTPD fixed-site plant.  However, up to now the largest plants ROI has 

manufactured include a 5 BDTPD mobile plant and a 15 BDTPD fixed-site (modular) 

plant.  Therefore, the system requirements for the plants in this study are based on 

projections calculated by ROI rather than observations.   
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Figure 1.2 Renewable Oil International, LLC fast pyrolysis process 

 
 
Source: Badger (2009c) 

 

The following outlines the ROI pyrolysis process as described by Badger (2008).  

For optimal results, feedstock must be chipped down to a particle size that is no more 

than 1/8th inch thick in at least one dimension to get the proper heat transfer rate.  After 

the feedstock is fed into the system it is dried down to 10% moisture content (30% initial 

feedstock moisture content was assumed in the analysis).  Feedstock is subsequently fed 

into the reactor, where it is heated to approximately 480o Celsius within 1 second.  The 

vapors are then rapidly condensed into bio-oil and the biochar is extracted.  Non-

condensable gas, or syngas, is re-circulated within the system to provide process energy. 

 After the pyrolysis process is complete, products are shipped to end-users.  I 

assumed that bio-oil would be sold as a substitute for No. 2 fuel oil to wholesale buyers 

in the Portland area, and biochar would be sold as a soil amendment to wholesale buyers 

Char

Heat Carrier

Gas & Vapor

Biomass

Moving Bed 
Reactor
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within a 2.5 hour haul of the pyrolysis plants.  Chapter 4 provides more detail on the 

financial costs and benefits for each plant.     

The remainder of this thesis is organized as follows:  Chapter 2 includes 

background information on the climate change implications of bioenergy use, followed 

by a closer examination of the pyrolysis process and the products it renders.  Previous 

literature on forest biomass utilization and pyrolysis cost studies is reviewed in chapter 3.  

I then lay out the input data used for the financial model in chapter 4 and the financial 

analysis methods in chapter 5.  The financial performance results of the mobile and fixed-

site pyrolysis plants and sensitivity analyses are presented in chapter 6.  Finally, the 

conclusions of this research are presented in chapter 7. 
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Chapter 2 

Review of climate change implications and biomass conversion methods within the 
renewable energy framework  

 
 

2.1 Bioenergy and climate change implications  

Global climate change is perhaps the most pressing environmental issue humanity 

currently faces.  Our climate is regulated by greenhouse gases (GHGs) that trap heat in 

the atmosphere to maintain temperatures necessary to sustain life on the planet.  

However, anthropogenic GHG emissions have increased significantly since the pre-

industrial era.  The Intergovernmental Panel on Climate Change (IPCC) declared with 

“very high confidence” that since 1750 the net effect of human activities has been one of 

warming (IPCC 2007).  The major anthropogenic GHGs in the atmosphere are carbon 

dioxide (CO2), methane (CH4) and nitrous oxide (N20).  CO2 is the most pervasive of the 

anthropogenic emissions and therefore GHG emissions are typically calculated based on 

their global warming potential (GWP)1 in terms of CO2 equivalents (CO2-e) (IPCC 

2007).   

Atmospheric CO2 levels are increasing due to anthropogenic emissions from the 

burning of fossil fuels and to a lesser extent from land use change.  According to the 

IPCC (2007), anthropogenic CO2 emissions grew by 80% between 1970 and 2004.  This 

perturbation of the natural carbon cycle contributes to increased warming potential in the 

                                                 

1 Methane (CH4) has a GWP 21 times that of CO2, and Nitrous Oxide (N2O) has a GWP roughly 310 times 
CO2.  However, CO2 is still the largest overall source of anthropogenic emissions after accounting for 
differences in GWP (IPCC 2007).   
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atmosphere and negative externalities such as rising sea level, ocean acidification, erratic 

weather patterns, and increased incidence of catastrophic forest fires (IPCC 2007).   

Increasing the share of renewable (non-fossil) energy to our national energy mix 

could serve as one strategy to mitigate anthropogenic GHG emissions.  By incorporating 

solar panels and wind turbines, a greater portion of electricity demand is met by 

renewable sources.  Using biomass or biochar in power plants can offset a portion of the 

coal that is burned for electricity generation.  Renewable liquid fuels such as ethanol, 

biodiesel, and bio-oil can substitute for fossil-derived fuels such as gasoline and diesel 

fuel oil.   

Without a binding policy that regulates GHG emissions and puts a price on 

emitting carbon, market failure exists.  The marginal social costs of activities that emit 

CO2 are greater than the marginal social benefits at the current level of consumption.  

This leads polluters to generate emissions in excess of the socially efficient amount.  

Polluters would need to be required to internalize the negative externalities they create in 

order to correct this market failure.   Such policies would encourage the use of renewable 

energy. 

Consumption of fossil energy such as coal and petroleum emits CO2 from the 

pool of sequestered carbon.  Sequestered carbon remains in the earth and does not 

increase atmospheric CO2 concentration unless it is mined and consumed to satisfy 

energy demand.  The net addition of CO2 to the atmosphere makes fossil fuel 

consumption a “carbon positive” practice. 

Conversely, consumption of renewable energy is often referred to as “carbon 

neutral” and occasionally even “carbon negative.”  This is because carbon from these 
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sources would be released to the atmosphere through the carbon cycle whether used for 

energy or not.  The biomass used for renewable energy is considered part of the pool of 

carbon that is in flux within the carbon cycle, as opposed to sequestered carbon which is 

stored outside of the carbon cycle.  Biomass takes in CO2 through photosynthesis and 

releases CO2 when it eventually decomposes.  Converting biomass to renewable energy 

avoids the atmospheric CO2 that would be emitted through decomposition—instead, CO2 

is emitted when the bioenergy product is consumed at the end of its life cycle.  When a 

portion of the carbon in biomass is diverted from the carbon cycle via pyrolysis and 

stored in biochar soil amendments, the practice can be considered “carbon negative,” as it 

results in a net decrease in atmospheric CO2 (Lehmann 2007; Winsley 2007; Matthews 

2008; Laird et al. 2009; Amonette 2009).   

Biochar is unique because it can be used as an energy product or as a soil 

amendment with the ability to store carbon for hundreds or even thousands of years 

(Cheng et al. 2008).  Both of these options can serve to mitigate anthropogenic CO2 

emissions, though according to Gaunt and Lehmann (2008), amending soils with biochar 

results in greater anthropogenic emissions reductions than using it as a fuel.   

While biochar soil applications may be desirable from a socio-economic 

perspective, the practice is not likely to be adopted on a large-scale unless there is an 

accompanying private benefit greater than or equal to the benefit that could be realized 

through using it as a fuel source.  As mentioned by Laird et al. (2009), government 

policies that give incentives to reduce GHG emissions would make pyrolysis more 

competitive with existing energy production technologies. 
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2.2 Renewable energy in the United States and Oregon 

 According to the Energy Information Administration (EIA 2010a), seven percent 

of domestic energy consumption came from renewable sources in 2008.  Over half of the 

renewable energy consumed in the United States is supplied by biomass, which 

contributes nearly 4 percent of total domestic energy consumption.  Figure 2.1 gives a 

breakdown of renewable sources within the domestic energy supply.  By comparison, the 

share of energy demand met by biomass in Oregon is above the national average at over 

six percent (OFRI 2007).  This can be attributed to the robust forest productivity in the 

state and the developed forestry and logging sector.   

 

Figure 2.1 Renewable energy consumption in the nation’s energy supply, 2008 

 

Source: EIA (2010a) 

 

 Hydroelectric power contributes roughly two-thirds of the electricity generated in 

Oregon, making the state one of leading generators of hydroelectric power in the nation 
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(EIA 2010b).  This substantial hydroelectric potential contributes to the relatively low 

electricity prices that the state enjoys (EIA 2010b).  These low energy prices also reduce 

the benefits of the mobile plant operating off-grid.  The four largest electricity generation 

facilities are hydroelectric plants located on the Columbia River.  Considerable wind 

energy potential also exists throughout much of Oregon, and the state accounts for 4 

percent of total domestic wind energy generation (EIA 2010b).    

 
 
2.3 Bioenergy conversion technologies 

 A thorough discussion of biomass sources and the options for producing energy 

from biomass can be found in McKendry (2002a; 2002b).  The two categories of 

conversion technologies are thermochemical and biochemical (McKendry 2002b; Caputo 

et al. 2005).  Below are brief descriptions of biochemical and thermochemical conversion 

methods, followed by a more detailed discussion of pyrolysis. Figure 2.2 shows the 

potential conversion pathways for woody biomass. 
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Figure 2.2 Conversion options for biomass to energy   

 
 

Sources: McKendry 2002b; Caputo et al. 2005 

 

 

2.3.1 Thermochemical conversion of biomass 

 Conversion of biomass by thermochemical means is accomplished through 

combustion, gasification and pyrolysis (McKendry 2002b).  The choice of conversion 

technology depends on the desired end-use products and the characteristics and location 

of the biomass feedstock.  Pyrolysis is the first step in combustion and gasification as 

well, though partial or total oxidation of the products occurs after pyrolysis in these 

processes (Bridgewater 2007). 

Combustion of biomass to generate energy involves burning in air to produce 

heat, mechanical power or electricity.  The scale of bioenergy production from 

Thermochemical Biochemical
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Anaerobic 
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combustion can be very small (i.e. wood stove) to very large (i.e. commercial power 

plant).  Small-scale combustion to produce steam for electricity generation is 

characterized by relatively low efficiency and potentially problematic emissions 

(Bridgewater 2004).  Due to high conversion efficiency of biomass at coal-fired power 

plants, co-combustion of biomass with coal can be an attractive option for maximizing 

biomass conversion efficiency (McKendry 2002b). 

Biomass gasification occurs at temperatures of over 800o Celsius and typically 

renders 85% gas, 10% char and 5% liquid (Bridgewater 2007).  The gas portion of the 

outputs, called producer gas, is most commonly used to generate electricity, though it can 

also be processed through Fischer-Tropsch synthesis to produce renewable transportation 

fuels (Kerns 2009).  Unlike combustion, gasification is characterized by high efficiency 

at all scales of operation (Bridgewater 2004).  One of the downsides of gasification for 

the production of electricity is that the system must be connected to the electrical grid in 

order to deliver the final product.  This limits the plausibility of an in-woods gasification 

plant that utilizes forest residues, as in-woods operations could benefit from the ability to 

operate at remote, off-grid sites.   

Pyrolysis is the thermal decomposition of biomass occurring in an oxygen-free or 

oxygen-restricted chamber to produce liquid, char and gas (Bridgewater 2004).  Biomass 

pyrolysis has been practiced for thousands of years in various capacities.  In ancient 

Egypt pyrolysis of biomass was used to produce tar for caulking boats and other 

applications (Mohan et al. 2006).  The existence of terra preta or “dark earths” of the 

Amazon suggests that pyrolysis was used to create char for soil management hundreds 
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and thousands of years ago (Lehmann et al. 2006).  More attention is given to pyrolysis 

technology, products and producers in sections 2.4 through 2.7.   

 

2.3.2 Biochemical conversion of biomass 

 Fermentation and anaerobic digestion are the biochemical methods of bioenergy 

production.  In the United States, fermentation is implemented on a large commercial 

scale at corn ethanol plants.  High moisture content biomass tends to be more suitable for 

biochemical rather than thermochemical conversion (Matthews 2008).   

The vast majority of ethanol produced in the United States is blended with 

gasoline at concentrations of up to ten percent (E10).  Ethanol is typically used as a 

gasoline oxygenation additive to boost the octane level of the fuel and reduce carbon 

monoxide emissions.  Methyl tert-butyl ether (MTBE) has also been used for gasoline 

oxygenation.  However, its use has declined significantly in recent years due to 

groundwater pollution concerns, and ethanol has been used in place of MTBE.  Eighty-

five percent ethanol blends (E85) are also available in some regions of the country and 

can be used in flex-fuel vehicles. The corn ethanol industry is the most mature biofuels 

sector in the United States, with nine billion gallons produced in 2008 and 170 

commercial plants in operation by January 2009 (RFA 2010).   

 Corn-based ethanol has been a contentious topic in agriculture and energy policy 

in recent years.  Several questions have been raised surrounding the associated ratio of 

energy inputs to outputs (energy balance), effects on world food supply and prices 

(Runge & Senauer 2007), and the direct and indirect land use changes resulting from 

ethanol production (Searchinger et al. 2008).  A full fuel-cycle analysis has shown that 
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energy balance and GHG emissions from ethanol plants vary widely, from slight 

increases in overall GHG emissions if coal is used for process energy, to significant GHG 

reductions if wood chips are used (Wang et al.  2007).  It is important to evaluate the 

merits and drawbacks of individual plants according to their specific characteristics, 

especially regarding the sources and required amounts of process energy per unit of 

output. 

Cellulosic ethanol is lauded as a fuel with improved energy balance and fewer 

concerns regarding food supply and land use change because it is produced from non-

food feedstocks (Lynd et al. 1991; Hill et al., 2006).  However, the technology has not 

been brought to market on a commercial scale due to high capital costs in comparison to 

corn ethanol plants.  The increased complexity associated with the conversion of 

cellulose rather than starch has also contributed to the delay in bringing large-scale 

cellulosic ethanol plants online (EIA 2007).  Development of unique enzymes to simplify 

the process and cut costs is a promising breakthrough that could bring cellulosic ethanol 

to market in the near future (Bradley 2009). 

 Anaerobic digestion is the other biochemical pathway, involving the conversion 

of organic wastes in the absence of oxygen to produce “biogas,” an energy-rich 

combination of methane and CO2 (McKendry 2002b).  The process is commonly 

employed to treat wastewater and reduce GHG emissions.   

Financial incentives from carbon credit projects have helped dairy and swine 

producers install anaerobic digesters on their farms.  Credits are generated by quantifying 

the reduced methane emissions in terms of CO2-e as well as avoided fossil fuel 
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consumption (ClearSky 2010).  Biogas can be used in turbines for electricity generation 

or upgraded to a product similar to natural gas by removing the CO2 (McKendry 2002b).   

 

2.4 Pyrolysis technology 

While pyrolysis is certainly an ancient practice, only recently have scientists 

understood the relationships between heat transfer rates and product yields and 

distribution (Ringer et al. 2006).  Table 2.1 shows the variation in product distribution 

based on the mode and reactor conditions under which pyrolysis occurs.  The product 

distribution from Bridgewater et al. (2007) represents the high end of bio-oil yield in the 

fast pyrolysis literature, and the product distribution from ROI (McGill 2009a) in the 

table is at the lower end of reported bio-oil yields from fast pyrolysis. 

 

Table 2.1 Typical product yields from pyrolysis of wood 
  Yield, % feedstock wt 
Mode Conditions Liquid Char Gas 
Fasta Moderate temperature, ~480oC, 

short residence time, ~1sec 
57 27 15 

Fastb Moderate temperature, ~500oC, 
short residence time, ~1sec 

75 12 13 

Slow (carbonization) Low temperature, ~ 400oC, very 
long solids residence time 

30 35 35 

Gasification High temperature, ~800oC, long 
vapor residence time 

5 10 85 

Source:  Table adapted from Bridgewater (2007) 
Notes: a. Yields used in this study, based on ROI technology, assuming 1% tar byproduct (McGill 2009a) 

  b. Yields based on Bridgewater (2007) and Ringer et al. (2006) 

 
 

2.4.1 Slow pyrolysis  
 

Whether pyrolysis is “slow” or “fast” refers to the rate at which the biomass is 

heated, though there is no precise definition of the heating rates or times that each refer to 
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(Mohan et al. 2006).  Slow pyrolysis, also called carbonization, is a well established 

technology that has historically been used to manufacture “charcoal.”  Brown (2009) 

defines charcoal as “char produced from pyrolysis of animal or vegetable matter in kilns 

for use in cooking or heating.”  Historical slow pyrolysis methods and the variety of 

pyrolysis pits, mounds and kilns that have been used over time are discussed, as well as 

suggestions for advancements in biochar system manufacturing (Brown 2009).  

The slow pyrolysis product distribution of liquid, char and gas is roughly 30%, 35% 

and 35% respectively (Ringer et al. 2006; Bridgewater 2007).  When char is produced for 

the purpose of applying it to soil for agronomic improvements or environmental 

management, it is often called “biochar” (Lehmann and Joseph 2009).   

 

2.4.2 Fast pyrolysis    

Transitioning from slow to fast pyrolysis drastically shifts the distribution of 

products in favor of bio-oil.  Fast pyrolysis refers to rapid heating of a feedstock in the 

absence of oxygen to produce char, vapors, and permanent or non-condensable gases 

(Ringer et al. 2006).  The vapors are quickly condensed to a dark brown liquid.  Several 

terms have been used to describe the liquid product, including pyrolysis oil, bio-crude, 

liquid wood, wood oil, and bio-oil (Bridgewater 1999).  Bio-oil is now the most common 

term and will continue to be used for the remainder of this paper.  The char and non-

condensable gases are hereafter referred to as biochar and syngas, respectively.   

 The product distribution of bio-oil, biochar and syngas can vary significantly 

depending on the type of fast pyrolysis reactor used.  Feedstock characteristics, including 

particle size and tree species (for pyrolysis of woody biomass), can cause the product 
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output to vary as well, but to a lesser extent (Amonette 2009).  Therefore, a range of 

product distributions is more likely to be observed than a constant distribution.  Based on 

conversations with ROI (McGill 2009a), the product distributions chosen for the baseline 

scenario in the methods section is 57 percent bio-oil, 27 percent biochar, 15 percent 

syngas, and 1 percent tar2.  This is assumed to be the most reasonable average 

distribution of products over time.   

 

2.5 Bio-oil characteristics   

Bio-oil is the liquid product of fast pyrolysis.  It is a free-flowing dark brown fuel 

with a strong “smoky” smell and an energy density 6 to 7 times that of raw biomass 

(Badger and Fransham 2006).  Representing one of the newest sources of renewable 

energy, bio-oil has the advantages of being readily storable and easily transportable 

(Bridgewater 2002).  With minimal modifications the fuel can substitute for liquid fossil 

fuels in several stationary applications such as boilers, engines and turbines (Ensyn 2001; 

Yaman 2004; Badger 2008; Bouchard 2009).   

Bio-oil typically contains 15-30% water and oxygen accounts for roughly half of 

its weight (Bridgewater 2002).  The prevalence of water in the fuel is the primary reason 

for several undesirable qualities in bio-oil, compared to petroleum-derived fuels.  High 

oxygen and water content in bio-oil reduces its energy density and increases its acidity 

(Oasmaa and Czernik 1999).  At ten pounds per gallon, the weight of bio-oil exceeds that 

of number two fuel oil.  Consequently, bio-oil contains approximately 60% of the energy 

                                                 

2 The presence of tar as a byproduct does not appear in the economics of fast pyrolysis literature, though in 
personal communication with ROI (McGill 2009) it was mentioned that a small amount, up to 1%, can be 
generated by their process.   
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content of No. 2 fuel oil on a volumetric basis, but only 40% of the energy content by 

weight (Bridgewater 1999).  Bio-oil does not mix well with hydrocarbon fuels and is not 

as stable as fossil fuels due to phase separation over time (Bridgewater 2002).   

   

2.6 Biochar characteristics 

The carbon and energy dense solid obtained from the pyrolysis of biomass is 

called biochar, especially when intended for use as a soil amendment (Brown 2009).  

‘Char’ is the generic term used to refer to the material regardless of its end-use.  The 

product is called ‘charcoal’ when used as a fuel for heating or cooking, and sometimes 

called ‘agrichar’ when applied to agricultural soils (Lehmann and Joseph 2009).  The 

term ‘biochar’ encompasses char used either for agriculture or to improve soils in other 

contexts such as environmental remediation.  

Biochar is a fine-grained, highly porous powder with several characteristics that 

can foster desirable properties in soils (IBI 2010).  The high porosity and large surface 

area of biochar allow it to improve water and nutrient retention in soils.  Biochar has also 

shown the ability to increase cation exchange capacity (Laird et al. 2009), a common 

measure for soil fertility.  The effect of biochar on mycorrhizal associations and soil 

microbes has been investigated, with evidence suggesting that biochar amendments could 

increase microbial activity and thus improve fertilizer use efficiency and plant growth, 

leading to economic and environmental benefits (Warnock et al. 2007; Laird et al. 2009).      

When used as a soil amendment, biochar is part of a process that can 

simultaneously produce renewable biofuels, sequester carbon, and improve degraded 

soils.  According to the IPCC (2000), over 80% of the organic carbon in terrestrial 
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ecosystems is in soil.  Therefore, soils should be considered a good option for carbon 

sequestration.  According to Lal et al. (2004), promoting soil carbon sequestration 

through recommended management practices has the potential to mitigate 5% to 15% of 

global fossil fuel emissions.    

The application of biochar to soils has been practiced for several millennia, as 

evidenced by the highly fertile terra preta (“dark earth”) soils of the Amazon Basin 

(Sombroek et al. 2003; Lehmann et al. 2006).  It is believed that the soils were 

purposefully amended with charred biomass by native inhabitants thousands of years ago.  

Soils in the region that were amended with biochar currently store approximately 2.5 

times the quantity of carbon compared to otherwise similar parent material soils in the 

region that were not amended (Glaser et al. 2001).  This suggests that biochar is very 

stable in soils and a one-time amendment can deliver long term benefits to the soil.   

Laird et al. (2009) provide a comparison of the carbon remaining in biomass over 

time compared with biochar.  For biochar, the amount of initial biomass carbon is 

reduced by about 40% when pyrolysis occurs, and another 10% within a few months of 

soil application.  The remaining 50% is stable in soil for thousands of years.  With 

biomass residue, about half of the carbon degrades within 6 months, and only 1% of the 

initial carbon remains after 4 years.  This suggests that the concerns regarding soil carbon 

and nutrient removal through extracting biomass residues for bioenergy production could 

be addressed in part by applying biochar after removing residues. 
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2.7 North American fast pyrolysis system producers 

  While pyrolysis is a relatively new technology for large-scale energy 

applications, it has been used to produce niche market chemicals for decades.  Over 200 

chemical compounds have been identified in bio-oil (Soltes and Elder 1981), and early 

commercial pyrolysis applications almost exclusively involved the extraction of value 

added chemicals.  

Ensyn, headquartered in Ottawa, Ontario, was incorporated in 1984 to 

commercialize its fast pyrolysis process.  Over 30 bio-chemicals have been extracted 

from Ensyn bio-oil, including flavoring products for the food industry and adhesive 

resins for the construction industry (Ensyn 2010).  Additionally, the company is engaged 

in the production of bio-oil for stationary fuel applications and research and development 

of renewable transportation fuels.  Ensyn has two facilities in Wisconsin that process 40 

and 45 metric tons of biomass per day (49.6 US tons), and a facility in Ontario with the 

ability to process 100 metric tons per day (110.2 US tons) (Goodfellow 2008).   

 Dynamotive is a publicly traded pyrolysis firm based in Vancouver, British 

Columbia, with additional offices in the United States and Argentina.  Since 2001 

Dynamotive has constructed fast pyrolysis facilities with increasing feedstock processing 

capabilities (Dynamotive 2010).  A 10 metric ton per day demonstration plant was 

completed in British Columbia, and plants with the ability to process 130 and 200 metric 

tons per day (143.3 and 220.4 US tons, respectively) were subsequently completed in 

West Lorne and Guelph, Ontario, respectively.  The West Lorne plant is co-located with 

Erie Flooring and Wood Products and uses sawdust generated on site as the biomass 
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feedstock.  A 2.5 megawatt Orenda turbine at the West Lorne plant has been fueled with 

bio-oil to generate electricity for sale to the Ontario grid. 

 Advanced Biorefinery Inc. (ABRI) is based in Ottawa, Ontario and specializes in 

multiple services involving energy and bio-products, including modular and mobile 

pyrolysis units (ABRI 2010).  ABRI has manufactured pyrolysis systems ranging from 

0.5 BDTPD mobile units to 50 BDTPD modular units.  

Renewable Oil International, LLC (ROI) is based in Alabama and specializes in 

mobile and modular fast pyrolysis systems that can be pre-fabricated and shipped to their 

destinations.  ROI has manufactured 5 bone dry ton BDTPD mobile units and 15 BDTPD 

modular units.  ROI has provided many of the projected cost and production estimates 

used to decipher the financial performance of the hypothetical mobile and fixed pyrolysis 

plants analyzed in this study.  Representatives from Dynamotive and Ensyn have also 

provided helpful information during the course of this project. 

The list of existing fast pyrolysis system producers in North America is fairly 

short.  In addition to the pilot plants and commercial-scale facilities that exist, research on 

fast pyrolysis technology has taken place at multiple locations, including Iowa State 

University, the University of Oklahoma, and the National Renewable Energy Laboratory 

(NREL) in Golden, CO.  In the next chapter, I discuss existing literature related to this 

financial analysis of mobile and fixed pyrolysis plants in southwest Oregon. 
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Chapter 3 
 

Previous literature 
 
 

3.1 Introduction 

This chapter discusses existing literature related to this project.  I begin by 

addressing transport and harvest cost models that consider the economic feasibility of 

biomass utilization.  Selected pyrolysis cost studies are then reviewed to set the context 

of the current study. 

 

3.2 Transport and harvest cost models 

Several studies have looked at methods for handling small diameter wood 

(biomass) from forestry operations and techniques to utilize the biomass as a feedstock 

for bioenergy production.  The economic feasibility of small wood harvesting and 

utilization in southwest Idaho was examined by Han et al. (2004).  Results indicated that 

markets for forest biomass need to be located close to the harvest site in order for 

biomass fuel harvesting to be feasible financially, and harvesting costs per unit volume 

increase as size of tree declines.  I find a similar trend with financial feasibility in my 

analysis—the further the biomass needs to be hauled, the less likely the operation is to be 

profitable.  Han, et al. also cited limited accessibility to existing roads, hauling distance to 

processing facilities, and low market prices for thinning materials challenges when trying 

to implement biomass utilization practices in conjunction with a forest restoration and 

thinning prescription.   
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A study by Silverstein et al. (2006) included biomass utilization modeling on the 

Bitterroot National Forest in western Montana.  The report compared fuel treatment 

prescriptions on public lands and examined the economic tradeoffs of hauling the 

material to different locations.  Forest Inventory Analysis (FIA) data was used to identify 

initial stand conditions and the Forest Vegetation Simulator (FVS) was used to simulate 

forest growth and estimate volumes of removed material over time.  The study was 

developed to help public land managers and private investors make decisions regarding 

the use of forest biomass as a renewable energy feedstock.  Maximum net value per acre 

figures were derived for each treatment prescription and incorporated with haul costs.  

The results showed the high importance of biomass market location in relation to the 

forest resources.  The results showed that biomass utilization (compared with on-site pile 

burning) was profitable in 97 percent of the areas with an average haul distance of 25 

miles, but fell to 57 percent when the haul distance was increased to an average of 75 

miles.   

Biomass volumes and availability in Ravalli County, Montana, were determined 

based on the “comprehensive treatment prescription” by Loeffler (2004).  The 

comprehensive prescription involves removal of all trees up to 7 inches in diameter at 

breast height (DBH) and some larger trees, with a target residual basal area of 50 square 

feet per acre.  Available biomass volumes were estimated based on selected forest types 

using Forest Inventory Analysis (FIA) data and remotely sensed GIS data, which 

complemented each other in order to produce robust biomass estimates.  Haul costs were 

estimated using GIS by calculating the distance by road surface type (paved and 

unpaved) from each polygon to the bioenergy production facility.  The analysis showed 
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that a comprehensive treatment prescription would produce 12 to 14 green tons of 

biomass per acre that could be delivered to a bioenergy facility in Ravalli County, 

Montana.  The Fuel Reduction Cost Simulator (FRCS) was used to estimate stump to 

loaded truck harvest costs with the comprehensive prescription across all diameter 

classes.   

Although the harvest and transport cost models mentioned above provide insight 

regarding estimated costs and common challenges, risks, and benefits inherent with forest 

biomass utilization projects, they are different in nature than this study.  The current 

project involves using forest biomass that has already been generated through thinning 

and restoration projects, so the decisions regarding treatment prescription are outside the 

scope of this analysis.  However, referring to the aforementioned studies in additional to 

the financial analysis produced here could help stakeholders make informed decisions 

while planning and implementing thinning and restoration prescriptions in combination 

with biomass utilization projects, especially if utilization through pyrolysis is one of the 

options being considered. 

 

3.3 Pyrolysis cost studies 

The University of New Hampshire considered using low-grade wood chips to 

produce bio-oil and investigated the feasibility of using bio-oil as a replacement for No. 2 

fuel oil for heat and electricity (Farag et al. 2002).  After evaluating the technologies 

designed by two Canadian pyrolysis firms, Ensyn and Dynamotive, they concluded that 

the Dynamotive bubbling fluidized bed design was more suited to their objectives and 

conducted the study based on that type of system.  They analyzed production costs for 
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feedstock rates of 100, 200, and 400 wet wood (45% moisture content) metric tons per 

day3, with a feedstock cost of $18 per wet metric ton.    

The research found that it would cost roughly twice as much to use bio-oil instead 

of No. 2 fuel oil in heat or electricity applications.  This led the group to suggest further 

research on using bio-oil for non-energy applications such as asphalt paving or “green 

chemicals, ” though they did not carry out the suggested research.  The Farag et al. study 

also concluded that bio-oil would be cost-competitive with fossil fuels for producing heat 

and electricity if the feedstock cost were to fall by 50% down to $9 per wet metric ton.  

That would be equivalent to $18 per bone dry US ton with zero moisture content (BDT), 

the units I use in my analysis.   

My study on financial performance of pyrolysis plants in southwest Oregon 

contributes to the literature by considering a mobile plant with lower feedstock costs, as 

suggested by Badger and Fransham (2006).  One major difference in the Farag et al. 

study and the current study is that Farag et al. did not include revenue for biochar.  

Instead, it was assumed to be used only for process energy in drying the feedstock.  If the 

study had assumed a char price similar to the $136 per ton chosen in my analysis, I 

presume that bio-oil would have been cost-competitive with fossil fuels, even with if 

feedstock costs were higher. 

A study on the applications of bio-oil was conducted by Czernick and 

Bridgewater (2004).  They listed several conclusions on the challenges that must be 

overcome in order for bio-oil to be a viable fuel in large-scale operations.  Among the 

                                                 

3 One metric tonne is equivalent to 2204 pounds, or 1.102 US tons. 
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challenges cited was the ‘cost of bio-oil’ which was determined to be 10% to 100% 

higher than the cost of fossil fuels.  However, the study did not go into great detail on the 

financial or energetic costs, making it difficult for that finding to be compared to the 

findings in the current study on pyrolysis plants in southwest Oregon.   

An overview of the technical and economic aspects of large-scale pyrolysis 

production, as well as a more comprehensive list of previous pyrolysis studies, was 

produced by Ringer et al. (2006) at the National Renewable Energy Laboratory (NREL).  

The report provides information on the technical requirements for pyrolysis, several types 

of pyrolysis reactor designs that can be implemented, and gives a detailed economic 

analysis of a theoretical 550 metric ton per day plant using a fluidized bed reactor design.  

In contrast, I consider a 50 BDTPD mobile plant and a 200 BDTPD fixed-site plant, 

based on ROI fast pyrolysis technology.  The pyrolysis reactors discussed in the Ringer et 

al. study include fluidized beds (bubbling and circulating), ablative, vacuum, and 

transported beds without a carrier gas.  In contrast, I consider ROI pyrolysis systems that 

use a mechanical auger reactor, also referred to as a moving bed (Badger 2009c).     

An economic analysis of a 200 bone dry metric ton (BDMT) per day plant by 

Dynamotive (2009) found a net production cost for bio-oil of $4.04 per GJ4.  This is 

equivalent to $0.74 per gallon of bio-oil on a volumetric basis was low enough to 

generate positive returns in the analysis.  Important assumptions in the model include a 

feedstock acquisition cost of $30.37 per BDMT and a raw feedstock requirement of 

57,420 BDMT per year.  The model assumed a 15-year economic life of the plant and 

                                                 

4 One GJ (gigajoule) is equal to 947,817 Btu (.948 MMBtu), which is the volumetric energy equivalent of 
approximately 6.8 gallons of No. 2 fuel oil, or 11.8 gallons of bio-oil.    
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yields of 65% bio-oil, 20% biochar, and 15% syngas as a percentage of feedstock weight.  

The project internal rate of return (IRR) was 9.2%, and NPV was $5.79 million.  In my 

comparative analysis, I assume a shorter operating life for the two facilities, lower yield 

of bio-oil, higher yield of biochar, the same yield of syngas, and 1% tar production.  

Neither the Dynamotive study nor the other studies in the literature list tar as a product 

from the pyrolysis of biomass.  In comparison, both the IRR and NPV found in the 

Dynamotive analysis are higher than the results I find for the mobile plant and lower than 

the results for the fixed plant.         

The pyrolysis cost studies mentioned above have discussed the operating 

conditions for various reactor configurations, potential applications for bio-oil and 

biochar (or generically, ‘char’), and highlighted some of the challenges of implementing 

pyrolysis  by comparing the costs of pyrolysis to those of fossil energy technologies.  I 

contribute to this body of literature by comparing the financial performance a pyrolysis 

firm could expect from either a 50 BDTPD mobile system or a 200 BDTPD fixed-site 

system.  This is done in the specific context of a plant that uses chipped forest residues as 

a feedstock for plants located in southwest Oregon.  In the next chapter I will discuss the 

baseline data collected from various sources. 
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Chapter 4 

Data 

 

4.1 Introduction 

A conscious effort has been made to use conservative cost and revenue figures in 

order to produce realistic results and avoid unreasonably high financial performance 

expectations for the mobile and fixed pyrolysis systems examined in this study5.  Initial 

capital investment and production figures for pyrolysis systems were supplied by the 

primary industry collaborator for this project, Renewable Oil International, LLC (ROI).  

Considerable information was also obtained through meetings, phone calls, and emails to 

service providers and industry experts in forest operations, biomass utilization, and fast 

pyrolysis systems, as well as the affiliates required for each stage of the production and 

distribution process for bio-oil and biochar.  

A “pyrolysis system,” as referred to in this study, includes a feedstock metering 

bin, conveyors, a dryer with emission control, pyrolysis module (reactor and furnace), a 

cooling tower, and a flex fuel generator6 (Badger 2009a).  The systems are referred to as 

50 and 200 BDTPD according to the bone dry equivalent feedstock volume they would 

be capable of processing in a 24-hour period at a 100% utilization rate7.  However, the 

actual amount (in bone dry ton equivalence) of feedstock processed depends on initial 

                                                 

5 Some input variables were characterized by a higher degree of uncertainty due to limited availability of 
commercial data for large scale pyrolysis firms.  I address those concerns by incorporating sensitivity 
analyses for selected variables in the results section and several additional variables in Appendix A. 
6 A generator is only included with the mobile plant.  The fixed plant is assumed to be connected to the 
electrical grid and will not generate electrical process energy by burning bio-oil (McGill 2009b). 
7 Utilization rate is defined as the average percentage of scheduled time during which the machine does 
productive work, expressed as a percentage of scheduled machine hours (Brinker et al. 2002).   
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feedstock moisture content when it enters the system, scheduled operating hours, and 

utilization rate.  A pyrolysis system plus the additional capital investments required to 

support the operation is referred to as a “pyrolysis plant” throughout this report. 

In addition to the pyrolysis systems, front end loaders are required to load the 

chipped biomass into feedstock metering bins.  This analysis assumes that loaders are 

purchased by the entity that purchases the pyrolysis plant.  Other handling components, 

such as chipping and transporting the biomass feedstock and transporting bio-oil and 

biochar, are assumed to be contracted out.  Quotations from service providers and expert 

opinions are used as baseline costs for these services.   

This chapter details the costs and benefits used for the baseline financial analysis 

and the methods used to determine the appropriate levels for those parameters.  Table 4.1 

lists the important production and plant assumptions for both plants which are 

subsequently discussed in greater detail.  I then discuss the costs for both plants in section 

4.3. The chapter concludes with a discussion the benefits (revenue) for the mobile and 

fixed pyrolysis plants, which include annual bio-oil and biochar sales and the sale of 

assets at the conclusion of the 10-year investment period 

 

4.2 Production and plant assumptions 
 

Production assumptions for the mobile and fixed plants are based on Badger 

(2009a) and listed in table 4.1.  The mobile plant is expected to operate 12 hours per day 

during 328.5 scheduled operating days with an 87.5% utilization rate.  In comparison, the 

fixed plant will operate 24 hours per day during 365 scheduled operating days and a 90% 

utilization rate.   
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Table 4.1 Production and plant assumptions 
Parameter     Level 
 Mobile 50 BDTPD Fixed 200 BDTPD 

Scheduled hours per day 12 24 

Scheduled operating days per year 328.5 365 

Utilization rate (%) 87.5 90 

Feedstock requirement (BDT/ya) 7,127 65,700 

Delivered feedstock requirement (tons/y at 30% moisture content) 10,182 93,857 

Prepared feedstock requirement (tons/y at 10% moisture content) 7,919 73,000 

Product yields (% of prepared feedstock weight)   

Bio-oil 57 57 

Biochar 27 27 

Syngas 15 15 

Tar  1 1 

Bio-oil production (gallons/y) 780,642b 8,322,000 

Biochar production (tons/y) 2,138 19,710 

Tar production (tons/y) 79 730 

 

Note:   a) y = year. b) Net of products used for process energy 

 

The utilization rate is a crucial factor, as it determines how much feedstock is 

needed and the quantity of bio-oil and biochar that can be produced and sold.  While the 

baseline utilization rates in this study may seem optimistic, a 90% online assumption is 

common among fixed-site biomass plants with mature technology (Badger 2010).  

Additionally, several published studies for energy production facilities and sawmills 

include similar operating time parameters, which are also discussed in terms of average 

availability, annual days of downtime, annual operating hours, onstream percentage, and 

downtime costs.  Wiltsee (2000) cites a 90.9% average availability at a biomass power 

plant since 1984 and Cattolica (2009) assumed a baseline onstream rate of 93% in a 

biomass to power feasibility study.  Lynd et al. (1991) and Richardson et al. (2007) 

assumed 15-32 and 10-20 days of annual downtime at ethanol plants, respectively.  A 

Fischer-Tropsch diesel production study by van Vilet et al. (2009) assumed 8000 annual 

operating hours (91.3% of the hours in a year).  Finally, a study of downtime costs at 
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hardwood sawmills found an average of 16.7 % downtime at 22 sawmills (Wiedenbeck 

and Blackwell 2003).  

Under the production assumptions mentioned in table 4.1, the mobile plant would 

consume 7,127 BDT of biomass per year and the fixed plant would consume 65,700 BDT 

of biomass per year.  The feedstock is assumed to be delivered to each plant with a 

moisture content of 30%.  Therefore, 10,182 tons at the initial moisture content will need 

to be delivered to the mobile plant and 93,857 tons to the fixed plant each year.  The 

feedstock is dried to 10% moisture content to prepare it for pyrolysis in the reactor, so the 

prepared annual feedstock requirement for the mobile plant is 7,919 tons and the fixed 

plant annual requirement is 73,000 tons. 

 Based on correspondence with McGill (2009a), both plants are expected to yield 

57% bio-oil, 27% biochar, 15% syngas and 1% tar, as a percentage of prepared feedstock 

weight.  Considering these product yields mobile plant annual production is 780,642 

gallons of bio-oil (after a portion is used for process energy), 2,138 tons of biochar, and 

79 tons of tar.  Fixed plant production is 8.32 million gallons of bio-oil, 19,710 tons of 

biochar, and 730 tons of tar. 

 

4.3 Costs 

 
In this section I outline the cost assumptions for both plants.  First I address 

capital costs and financing, followed by the baseline costs for labor, feedstock acquisition 

and handling, energy, maintenance and product delivery.  I then outline the calculations 
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used for insurance, taxes and depreciation.  The section concludes with a discussion of 

the mobile plant move-in and annual relocation costs.  

 

4.3.1 Capital costs and financing 

Cost and revenue assumptions are reported in table 4.2.  The initial capital 

investment for the 50 BDTPD mobile plant mobile pyrolysis plant added up to $3.46 

million, including a pyrolysis system cost of $3.42 million (Badger 2009a) and $44,000 

for a front-end feedstock loader (Herzog 2009).  A spreadsheet software package was 

used to calculate financing costs over a 7-year repayment period with equal annual loan 

payments8.  As suggested by Badger (2009a) and confirmed to be reasonable by Lewis 

(2009), the analysis for both plants used an interest rate of 9% for debt financing and a 

40% down payment.   

  

                                                 

8 The initial assumption was a repayment period of 10 years.  I subsequently adjusted that to a 7-year 
repayment based on the advice of a commercial lender in Missoula, MT (Lewis 2009).  Lewis suggested 
that a lender would require a loan period that is shorter than the expected operating life of the plant.  Lewis 
also suggested that an interest rate of 7-8% may be possible as well, though I elected to retain the more 
conservative rate of 9% in this analysis. 
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Table 4.2 Cost and revenue assumptions 
Parameter     Level 
 Mobile 50 BDTPD Fixed 200 BDTPD 

Initial capital investmenta ($) 3,459,000 24,256,000 

Pyrolysis system ($) 3,415,000 15,000,000 

Loader(s) ($) 44,000 256,000 

Other ($) NA 9,256,000 

Costs   

Down paymentb ($) 1,383,600 9,702,400 

Loan paymentc ($) 412,362 2,891,662 

Labord ($) 344,137 1,059,240 

Feedstockd ($) 143,978 2,978,087 

Feedstock loadingd ($) 10,245 23,342 

Purchased energyd ($) 68,109 1,595,941 

Repair and maintenanced ($) 29,578 333,840 

Bio-oil deliveryd ($) 87,588 725,678 

Biochar deliveryd ($) 29,158 268,773 

Insuranced ($) 45,727 341,257 

Annual Mobilizationd ($) 1,632 NA 

Move-in and setupb ($) 680 NA 

Taxes e ($) varies varies 

Revenue   
Bio-oild ($) 1,063,471 11,337,079 
Biochard ($) 290,806 2,680,560 
Salvage / end of project revenuef ($) 1,383,600 7,525,600 

 

Notes:   a. Sum of ‘pyrolysis system’, ‘loader’, and ‘other’.  b. Year 0.  c. Years 1-7.  d. Years 1-10. e. Tax payments vary each year 

due to changes in deductible interest payments and taxable income. Annual tax payments are reported in chapter 6.  f. Year 

10. 

 

 
 

An initial capital investment of 24.26 million was determined for the 200 BDTPD 

fixed-site plant9.  With a purchase price of $15 million, the largest component of initial 

capital investment for the fixed plant was the pyrolysis system.  Fixed plant initial capital 

investment includes the pyrolysis system and two front end feedstock loaders at a price of 

$128,000 each for a total of $256,000 (Carter 2009), as well as allocations for land, 

building, site preparation costs, and the additional capital investments required to support 

the operation.  Additional capital costs for the fixed plant added up to $9.26 million.  

                                                 

9 See Table B.6 in Appendix B for a breakdown of fixed plant initial capital investment. 
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ROI provided an estimate of $10.02 million for the 200 BDTPD system (Badger 

2009a).  By comparison, the initial capital investment figure used in the Dynamotive 

(2009) economic model was $29.3 million, with roughly $20 million of the capital 

investment attributed to a 200 BDMT per day pyrolysis system.  As noted by Cole Hill 

Associates (2004), the lower cost of an ROI facility is explained by differences in 

technology that significantly reduce capital and operating costs.  The ROI system uses a 

mechanical auger reactor (also called a moving bed reactor), as opposed to the fluidized 

bed reactor design used by Dynamotive.  Therefore, the ROI reactor does not require an 

inert gas stream to transport sand or fluidize a bed, thus simplifying the process and 

lowering costs (Cole Hill 2004). 

 The 200 BDTPD ROI facility would consist of four 50 BDTPD modular systems 

operating together.  Due to the high utilization rate of 90% over 365 scheduled days 

chosen for the base case, I assumed that initial capital investment includes the purchase 

of five modular 50 BDTPD systems, with only four intended to be used simultaneously.  

In this case, each of the five modular units could be taken out of the system periodically 

for scheduled maintenance to minimize down time for the overall plant.  Taking these 

details into consideration, a purchase price of $15 million was assumed for the 200 

BDTPD system analyzed in this study, which is approximately the mean of the pyrolysis 

system price quoted by ROI (Badger 2009a) and the pyrolysis system price used in the 

Dynamotive (2009) study. 

I now devote attention to the capital costs in addition to the pyrolysis system at 

the fixed site.  There are multiple lumber mill sites near Roseburg along Highway 138 

that are not in operation due to market conditions in the wood products industry 
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(Lawrence 2009).  The Swanson Mill site in Glide, Oregon, owned by Swanson Group, 

was suggested as a potential site for the 200 BDTPD pyrolysis plant evaluated in this 

study.  The financial model assumed that a 20-acre parcel of land at a price of $2 

million10 would be necessary to operate the fixed plant (Nelson 2009). 

In addition to the pyrolysis system, loader and land costs, I allocated $4 million 

for building costs and an additional $2 million for outside improvements including 

parking, holding yards, weigh scale, paving, landscaping, and fencing.  Finally, $1 

million was the assumed cost for non-pyrolysis building contents including office 

fixtures, computers, and additional administrative equipment.   

It should be noted that there was some uncertainty regarding the portion of initial 

investment costs in addition to the pyrolysis system.  ROI designs the systems (also 

referred to as modules), but they do not design the facilities for the modules and therefore 

could not provide a quote for facilities expenses.   

The initial capital investment figures were used to determine down payment for 

each plant, as well as the annual loan payments that occur in years 1 through 7 of the 10-

year investment period.  Financing costs were calculated using the same loan terms for 

both the fixed plant and the mobile plant.  Assuming 40% of initial capital investment is 

paid in year zero of the investment period, a down payment of $1.38 million is paid for 

the mobile plant and $9.70 million for the fixed plant.  Using the 9% interest rate on 

                                                 

10 This information was obtained by Steve Nelson, Contracting Officer with the Umpqua National Forest, 
via personal communication with an official at Swanson Group.  Swanson Group is a privately held forest 
products company based in Southern Oregon.  It should be noted that the $2 million figure is not an official 
list price or selling offer, though it is considered a reasonable estimate for the purposes of this study. 
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borrowed funds over a loan period of 7 years, the model includes 7 annual loan payments 

of $0.41 million for the mobile plant and $2.89 million11 for the fixed plant. 

 

4.3.2 Labor costs 

An hourly wage of $21.5612 was selected for baseline labor costs by accessing the 

Quarterly Census of Employment and Wages database on the Bureau of Labor Statistics 

website (BLS 2009a).  A fringe and benefit rate of 35%13 was added to produce a base 

case wage and benefit rate of $29.10 per hour.  ROI estimated that the mobile pyrolysis 

plant would require three employees during all scheduled operating hours, and a firm 

would likely employee two shifts of three employees that work three days on and three 

days off (Badger 2009a).  With 328.5 scheduled days and three workers working twelve 

hours each at a labor cost of $29.10 per hour, the resulting a baseline annual labor was 

$344,137. 

The fixed plant is a much larger entity than the mobile plant and will therefore 

have more specialization and wage variation amongst the employees.  Granting that there 

will be employees with both higher and lower wages than the mobile plant employees, 

this analysis assumed the same average hourly wage and benefit cost of $29.10 per 

                                                 

11 See Appendix B, Table B.7 for a breakdown of fixed plant financing costs. 
12 This is based on Average Annual Pay in Douglas County, Oregon in the Forestry and Logging industry.  
Preliminary 2008 average annual pay per employee for public and private ownership was $54,331 and 
$35,342, respectively. I calculated the mean of those and converted it to an hourly rate of $21.56, based on 
2080 annual hours per employee.   
13 I apply a 35% fringe/benefit rate for both the mobile and fixed plant employees in this financial analysis, 
which is the same rate used by Fight et al. (2006) in the Fuel Reduction Cost Simulator (FRCS). The 
assumed overhead rate in Farag et al. was 30%, and the benefit rate as a percent of total compensation from 
the BLS (2009a) online database has varied between 32.3% and 33.1% since 2006 (BLS 2009b).  
Therefore, 35% is considered appropriate. 
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employee14.  Based on the methodology in Farag et al. (2002), I estimated that 17.5 full-

time equivalent (FTE) employees would be required for a 200 BDTPD pyrolysis plant.  

With 17.5 employees each scheduled to work 40 hours per week (2080 per year) at wage 

and benefit rate of $29.10 per hour per employee, annual labor costs added up to $1.06 

million15. 

 

4.3.3 Delivered feedstock and loading costs 

Feedstock costs were determined by beginning with biomass stumpage16 and 

adding transport and preparation costs.  I used a stumpage price of $.09 per ton (Curtis 

2009) and assumed the material has an average moisture content of 30% when collected.  

Biomass haul cost was calculated based on a trucking cost of $110 per hour (Chung 

2009).  As the mobile plant will be located in-woods, I assumed the biomass will be 

hauled on mostly unpaved forest roads at an average of 10 miles per hour in 12.5 ton 

truckloads17.  A rate of $7.50 per BDT was also added to account for chipping cost 

(Dykstra 2009).  Taking each of these feedstock cost parameters into account resulted in 

an annual feedstock cost of $143,978 for the mobile pyrolysis plant18. 

The fixed plant feedstock costs were calculated using a two-phase haul from the 

forest to the plant.  A cost of $7.50 per BDT (Dykstra 2009) was allocated for chipping 

                                                 

14 See Appendix C for more details on determining number of employees required for a 200 BDTPD plant 
and an alternate method of determining average wage and benefit rate.  
15 See Table B.8 in Appendix B for a breakdown of fixed plant labor costs. 
16 Stumpage is the price charged by a land owner to companies or operators for the right to harvest timber 
on that land. Stumpage used to be calculated on a "per stump" basis (hence the name).  It is now usually 
charged by tons, board feet or by cubic meters.  This analysis is based on a per ton price.  
17 The speed and truck capacity for logging roads are based on results from Rawlings et al. (2004). 
18 Refer to Table B.1 in Appendix B for mobile plant feedstock cost parameters. 
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the feedstock before it is hauled to a concentration yard located an average of five road 

miles from the slash pile.  The first phase of the fixed plant feedstock haul is 

characterized by the same cost parameters used for the mobile plant feedstock haul—a 10 

mile roundtrip at 10 miles per hour in a truck hauling 12.5 tons of biomass at a cost of 

$110 per hour.  At the concentration yard an allowance of $2.50 per BDT of feedstock 

was added to account for re-loading the material into larger trucks (chip vans) that can 

haul 25 tons of biomass per truckload.  The chip van haul cost was estimated using the 

same cost of $110 per hour (Chung 2009), but at a significantly higher average speed of 

25 miles per hour.  A distance of 45 miles (90 miles roundtrip) is assumed for the second 

phase of the biomass haul in the 25 ton chip van.  This two-phase biomass haul to the 

fixed plant results in a cost of $45.33 per BDT of feedstock, more than twice the 

feedstock cost assumed for the mobile plant ($20.20 per BDT).  Annual delivered 

feedstock costs for the fixed plant added up to $2.98 million19. 

Assuming an average feedstock weight of 500 pounds per cubic yard and a 1-yard 

capacity bucket on the 262 Skid Steer used at the mobile plant, four loader cycles equal 

one ton of feedstock at the initial moisture content of 30%.  Operating hours for the 

loader were calculated with the understanding the a feedstock weight reduction will occur 

after the feedstock is loaded into the system and dried from 30% to 10% moisture 

content.  Therefore, it was determined that the loader would need to operate 3.1 hours per 

day in order to load the annual requirement of 10,182 tons of feedstock at 30% moisture 

content.  This is equivalent to 7,919 tons after the system dryer reduces the moisture 

                                                 

19 See Table B.9 in Appendix B for a breakdown of fixed plant delivered feedstock costs. 
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content to the 10% level required by the pyrolysis reactor.  Taking these factors into 

account, total loading costs for the mobile plant added up to $10,326 per year20.   

The fixed plant will consume much more feedstock and require a larger wheel 

loader with a bucket capable of filling the feedstock metering bin at a faster rate.  It was 

decided that the 914G wheel loader would need to operate for 6.4 hours per day with a 4 

cubic yard bucket to fulfill the annual feedstock requirements of the 200 BDTPD fixed 

pyrolysis plant—93,857 tons at 30% moisture content, reduced to 73,000 tons at 10% 

moisture content by the system dryer before entering the pyrolysis reactor.  Considering 

that one loader would reach the end of its useful operating life at roughly five years of 

operation under these circumstances, I assumed that two loaders would be purchased at 

the beginning of the investment period for the fixed pyrolysis plant.  Therefore, the two 

loaders could be used interchangeably and remain in service for the lifetime of the 

pyrolysis plant.  After accounting for fuel consumption and periodic tire replacement and 

preventative maintenance, annual loader costs for the fixed plant came to $23,34221. 

 

4.3.4 Process energy consumption and costs 

Energy prices tend to have large fluctuation, and the financial performance of a 

pyrolysis firm depends on the price and quantity of energy consumed in the production 

process.  This analysis used 2008 average prices from the Energy Information 

Administration (EIA) for propane and electricity to satisfy the thermal and electrical 

                                                 

20 See Table B.2 in Appendix B for the feedstock loading parameters used in this calculation. 
21 This figure represents the costs in addition to purchase price and labor costs.  Those costs are accounted 
for in the capital costs and labor costs sections, respectively.  See Table B.10 in Appendix B for a 
breakdown of fixed plant feedstock loading costs. 
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energy requirements, respectively, of the systems.  The 2008 West Coast average price of 

$2.28 per gallon of industrial propane (EIA 2009a) was assumed to calculate the costs for 

the portion of thermal process energy that must be purchased.  The Oregon industrial 

electricity price of $0.0474 per kWh (EIA 2009b) was used to calculate purchased energy 

cost for the fixed plant.  It should be noted that some of the process energy calculations 

were based on linear projections from ROI.  Therefore, they may not reflect the full 

extent of energy savings per unit of output that could be expected from scaling up a 

facility (Badger 2009a). 

For both the mobile and fixed plant financial models, 75% of thermal process 

energy was assumed to be provided by syngas produced from the pyrolysis process 

(Badger 2009a).  The remainder is supplied by purchased propane.  However, according 

to McGill (2009a), syngas provides a range of 75-125% of the thermal energy needed for 

the dryer and pyrolysis reactor.  Therefore, the 75% assumption in the baseline analysis is 

considered conservative with respect to the financial performance of the two plants.   

The thermal energy requirement is 3.22 MMBtu per hour for the mobile plant and 

25.78 MMBtu per hour for the fixed plant (Badger 2009a).  Propane is purchased to 

provide 25% of these energy requirements.  This resulted in 8.8 gallons of purchased 

propane per operating hour at the mobile plant and 70.5 gallons per hour at the fixed 

plant.  At $2.28 per gallon of industrial propane (EIA 2009a), the thermal energy costs 

for the mobile and fixed plants were $68,109 and $1.27 million, respectively. 

All of the electrical energy required for the mobile plant is provided by burning 

bio-oil in the flex fuel generator that is integrated with the pyrolysis system.  Using bio-

oil for electrical process energy allows the mobile plant to operate without being 



43 

 

connected to the electric grid.  However, burning bio-oil in a generator with a conversion 

efficiency of 30% (S. Badger 2009a) would require 31.25 gallons of bio-oil per hour to 

meet the 0.75 MMBtu of electrical energy required each hour.  This translated to an 

annual diversion of 122,188 gallons of bio-oil from the market, with an estimated market 

value of $166,456 at the baseline delivered price of $1.36 per gallon.  The same quantity 

of electrical energy could be purchased from the grid for approximately $40,739 at a 

price of $0.0474 per kWh, the electricity price assumed for the fixed plant.  Therefore, 

under these assumptions the mobile plant would sacrifice $125,717 in annual revenue in 

order to operate off-grid.  That opportunity cost is accounted for in the mobile plant 

revenue section by reducing the quantity of bio-oil for sale. 

Considering the thermal and electrical energy parameters mentioned above, the 

annual purchased energy cost amounted to $68,10922 for the mobile plant.  This cost was 

completely attributed to propane purchased to provide the 25% of thermal process energy 

not met by syngas.   

Electrical energy for the fixed plant was assumed to be purchased entirely from 

the electric grid (McGill 2009b)23 at a rate of $0.0474 per kilowatt-hour (kWh) (EIA 

2009).  With 876 kWh purchased each operating hour, annual electrical energy costs for 

the fixed plant added up to $0.33 million, which brought the total fixed plant energy costs 

to $1.60 million each year. 

 

  

                                                 

22 Energy costs for the mobile plant are delineated in Table B.3 of Appendix B. 
23 See Table B.11 of Appendix B for a breakdown of fixed plant energy consumption and costs. 
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4.3.5 Repair and maintenance costs 

 Repair and maintenance (R&M) costs were provided by ROI for both the mobile 

and fixed plants.  ROI has not previously manufactured plants as large as the 50 and 200 

BDTPD plants considered in this analysis.  Therefore, the R&M costs are projections 

based on smaller plants as opposed to actual costs.   

The mobile plant is expected to have annual repair and maintenance costs of 

$29,578 for the pyrolysis system, which includes $1400 in lube and oil costs for the flex 

fuel generator used to supply electrical process energy (Badger 2009a). 

Badger (2009a) provided an annual repair and maintenance estimate for the fixed 

plant that was equal to 1.5% of the quoted pyrolysis system purchase price.  I calculated 

R&M costs based on 1.5% of initial capital investment figure used in this study (not 

including land), using the increased pyrolysis system cost described in section 4.3.1.  

Annual R&M costs for the fixed plant then came to $330,840 (Badger 2009a). 

 

4.3.6 Product delivery costs 

Costs for bio-oil and biochar delivery are important factors regarding the financial 

performance of a pyrolysis plant.  Figure 4.1 displays the expected market locations for 

bio-oil and biochar produced at the mobile and fixed pyrolysis plants.  The assumed 

market for bio-oil is Portland, Oregon, and biochar is expected to be sold within a 2.5 

hour average haul distance from each plant. 

 Product delivery costs are addressed in sections 4.3.6.1, 4.3.6.2 and 4.3.6.3.  I 

begin by discussing the bio-oil delivery costs and follow with delivery costs for the 

biochar and tar produced at the mobile and fixed pyrolysis plants. 
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4.3.6.1 Bio-oil delivery costs 

Cost estimates for delivery of bio-oil to selected end-use markets were obtained 

from a fuel trucking firm in Roseburg (Dirksen 2009).  As shown in table 4.3, delivery 

cost per gallon depends on trucking route and the size of fuel truck used.  Delivery cost 

decreases as fuel truck size increases and delivery cost increases as haul distance 

increases.  While the trucking route and size of truck will vary depending on mobile plant 

location, I have attempted to balance out the costs for the base case by choosing to use 

the cost estimates for hauling to Portland, the longest trucking route, and the largest fuel 

truck with a 9000 gallon capacity.  Therefore $.1122 per gal is the baseline average fuel 

delivery cost for the mobile plant.  With a projected bio-oil sales volume of 780,642 

gallons per year, annual delivery costs were estimated to be $87,588 for the mobile plant. 

 
 
Table 4.3 Dirksen & Sons bio-oil delivery estimate (cents per gallon) 
 Small bobtail (2000 

gallon) 
Large Bobtail (3500 

gallon) 
Transport (9000 

gallon) 

Lemolo Lake junction to 
Roseburg (79 mi) 

.1717 .1017 .0467 

Lemolo Lake junction to 
Eugene (150 mi) 

.2417 .1456 .0760 

Lemolo Lake junction to 
Portland (251 mi) 

.3272 .2172 .1122a 

Glide to Roseburg (16 
mi) 

.1217 .0717 .0217 

Glide to Eugene (88 mi) .1917 .0956 .0456 
Glide to Portland, OR 
(195 mi) 

.2872 .1872 .0872b 

Source: Dirksen (2009) 

 Notes:  a. Baseline cost used for mobile plant bio-oil delivery 

 b. Baseline cost used for fixed plant bio-oil delivery 
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Figure 4.1 Market locations for bio-oil and biochar 

 
 
Source: Page-Dumroese (2010) 

 

 

Bio-oil delivery costs for the fixed plant were based on transport from Glide to 

Portland in a 9000 gallon fuel truck.  With 8.32 million gallons of bio-oil to be sold each 

year and transport costs of $0.0872 per gallon, annual bio-oil delivery costs for the fixed 

plant came to $725,67824. 

 

  

                                                 

24 See Table B.12 in Appendix B for a breakdown of fixed plant bio-oil delivery costs. 

Bio-oil market

Biochar 

market
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4.3.6.2 Biochar delivery costs 

Biochar is assumed to be sold into smaller markets within 2.5 hours by road from 

the mobile pyrolysis plant, and a five-hour average truck rental was estimated for each 

27.5 ton biochar delivery.  A $70 per hour cost for delivery results in an average cost per 

truckload of $375 (Whitaker 2009).  These parameter levels produced an annual biochar 

delivery cost of $29,15825 for the mobile plant. 

 The fixed plant located in Glide, Oregon will produce approximately 19,710 tons 

of biochar for market annually.  As the fixed-site pyrolysis plant is located closer to 

Roseburg, a likely market center for biochar, a significant portion of the biochar will 

likely have a shorter and less costly haul to market than the biochar produced at the 

mobile plant.  However, due to the significantly larger quantity of biochar that is 

produced, it is likely that a portion of the biochar will need to be transported longer 

distances in order to be absorbed into the market.  I assumed that these tradeoffs cancel 

each other out. Therefore, 5 hours was the assumed roundtrip trucking time to bring 

biochar to market from the fixed plant, the same baseline haul time used for the mobile 

plant.  With 717 truckloads of biochar transported to market per year, the annual cost for 

biochar delivery from the fixed plant comes to $268,77326. 

 

4.3.6.3 Tar delivery costs 

As reported in table 4.1, up to 1% of the biomass may be converted to “tar” in 

ROI pyrolysis systems (McGill 2009a).  Based on 1% of prepared feedstock weight, the 

                                                 

25 See Appendix B, Table B.5 for a breakdown of mobile plant biochar delivery costs.  
26 See Appendix B, Table B.13 for a breakdown of fixed plant biochar delivery costs. 
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mobile plant would produce 79 tons of tar each year, and the fixed plant would produce 

730 tons.  This financial model accounts for tar production by decreasing the bio-oil and 

biochar outputs from 57.5% and 27.5% to 57% and 27%, respectively. 

Further research is needed on the characteristics of pyrolysis tar to determine if it 

is a product that could be sold for revenue or a waste product that generates disposal 

costs.  Due to the uncertainties regarding the chemical makeup of the tar and its 

suitability for value-added products, it is considered revenue neutral in the analysis.  For 

this study, I assume that tar is sold to end users at a price equal to the transportation cost.  

Therefore, no net change in cash flow is generated. 

 

4.3.7 Insurance costs 

The insurance costs for both plants were based on correspondence with an 

insurance provider in Roseburg, Oregon (Wood 2009).  Annual premiums were 

calculated according to the value of assets and the annual gross revenue of the firm.  

Liability insurance premiums were calculated as 1.5% of gross revenue27.  Property 

insurance premiums were based on 0.4% of asset value for buildings and 0.7% of the 

building contents value.  As no buildings are required for an in-woods mobile plant, 

property insurance was calculated at 0.7% of the pyrolysis system cost.  Finally, an 

annual cost of $1200 was included for Directors and Officers Liability Insurance (D&O) 

for each system (Wood 2009).  D&O is intended to cover legal expenses for alleged 

“wrongful acts” committed by directors and officers of the company.   

                                                 

27 An insurance agent in Roseburg (Wood 2009) suggested a rate of 1.875% of revenue to calculate annual 
liability insurance premiums, and ROI suggested 1% of revenue.  Therefore, I elected to use a rate between 
those two, but slightly closer to the higher cost estimate. 
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The annual property insurance premium for the mobile plant was $24,213 and the 

annual liability insurance premium is$20,314.  Including $1,200 D&O, the total annual 

insurance cost for the mobile plant added up to $45,727. 

For the fixed plant, annual property insurance for the building was $16,000, and 

$113,792 for the contents of the building.  Calculated according to 1.5% of gross 

revenue, another $210,265 per year was included for liability insurance.  By adding these 

insurance cost components to the $1,200 allocation for D&O, total annual insurance cost 

for the fixed plant came to $341, 257. 

 

4.3.8 Taxes and depreciation  

 For both the 50 and 200 BDTPD pyrolysis plants, taxes paid on net cash flow 

(minus depreciation) were incorporated to determine NPV, IRR, and Payback Period.  

The model developed for this project assumed that federal taxes are paid according to 

Internal Revenue Service (IRS) Form 1120, Schedule J28, and a $10 minimum tax plus a 

6.6% corporate excise tax is paid to the state of Oregon according to Form 20, the Oregon 

Corporate Excise Tax Return29.  Taxable income and taxes paid vary each year due to the 

changing proportion of the loan payments that are attributed to principal and interest.  As 

portion of the loan payment attributed to interest decreases during the loan repayment 

period, the tax bill increases because less interest is deducted from gross income to 

calculate taxable income. 

                                                 

28 See Appendix D for the federal corporation tax schedule applied in this analysis 
29 Oregon taxes were calculated based on compliance with 2008 tax laws.  New legislation that would 
increase the minimum tax, income and excise taxes for corporations was pending at the time of this 
analysis. 
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Straight line depreciation of capital over the useful operating life of ten years is 

assumed for the purpose of reporting taxable income to the IRS.  It should be noted that 

no special financing and grant programs or accelerated depreciation30 are used in the 

analysis, nor are production credits or employment credits.  Further investigation of these 

opportunities would be warranted as a firm develops a business plan and seeks debt 

financing for a pyrolysis plant.  A firm could expect increased financial performance 

upon the passing of preferential biomass energy legislation and if favorable depreciation 

and special financing programs are incorporated.   

 

4.3.9 Mobile plant initial mobilization and annual relocation costs 

Initial mobilization costs are specific to the mobile plant that will operate in-

woods near forest biomass stocks generated from thinning and restoration activities.  The 

purchase price for the pyrolysis system includes delivery to Roseburg, Oregon, and the 

system is permanently mounted on two 53-foot lowboy trailers (Badger 2009c).  

Mobilization costs include a $68 per hour per truck rental to transport the pyrolysis 

system to the processing locations (Whitaker 2009).  The model includes rental of two 

trucks for five hours for initial mobilization, resulting in an initial mobilization cost of 

$680.31  

                                                 

30 Modified Accelerated Cost Recovery System (MACRS) is the system used in the IRS tax code to 
depreciate property purchased after 1986 on an accelerated basis.  This encourages business investment by 
lowering the tax burden of a business during the early years of the investment period.   
31 This analysis does not identify the initial or subsequent specific locations for the mobile pyrolysis plant, 
though a 5-hour roundtrip haul is assumed to be reasonable for initial mobilization into the study region.  
An additional hour of truck rental is included for relocation to account for time to move the two trailers 
from one location to another. 
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I assume the mobile unit is relocated twice per year in order to move closer to 

available biomass to maintain an average roundtrip feedstock haul of no more than ten 

miles.  An additional six-hour rental of two trucks at a cost of $68 per hour per truck is 

included each time the system is relocated (Whitaker 2009).  Relocation cost includes 

two moves per year at $816 per move, for a total annual relocation cost of $1632 for the 

mobile plant.   

It is assumed that three employees will spend eight hours breaking down the 

equipment and eight hours setting it up at each new location (Badger 2009c).  The break 

down and set up labor for the employees is accounted for in the annual employment costs 

section.  The forgone production of bio-oil and biochar caused by equipment downtime 

during the move is an opportunity cost of relocation.  I account for this by lowering the 

baseline scheduled operating days per year from 328.5 to 325.8 to reflect two moves per 

year at 16 hours (1.33 operating days) per move.   

 

4.4 Benefits 

This section outlines the annual revenue sources for the mobile and fixed 

pyrolysis plants, starting with the revenue from bio-oil and concluding with biochar 

revenue.  The financial analysis includes revenue equal to the salvage value of each plant 

at the end of the 10-year operating life.   

According to ROI, their systems produce 55-60% bio-oil, 25-30% biochar and 

15% syngas, as a percentage of feedstock weight (Badger 2009a).  I assume that average 

product output is the midpoint of those output ranges, with .5% subtracted from both bio-

oil and biochar to account for 1% tar.  McGill (2009a) added that the percentage of 
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syngas has negligible variation and the percentages of bio-oil and biochar vary with a 

direct tradeoff relationship (e.g., 1% more bio-oil means 1% less biochar. 

Bio-oil accounts for the majority of the revenue for each plant, with 57% of the 

feedstock weight coming out in liquid form.  Biochar is expected to provide significant 

income as well, with 27% of the feedstock weight coming out in solid form.  The 

remainder of the feedstock weight becomes syngas which is used for process energy, and 

tar which is mentioned above. 

 

4.4.1 Bio-oil revenue 

A representative of Dynamotive, a Canadian pyrolysis firm headquartered in 

British Columbia, suggested setting bio-oil delivered price equivalent to No. 2 fuel oil on 

a price per unit of energy basis with a 10% discount32 (Bouchard 2009).  The 10% 

discount is provided as an incentive to switch to bio-oil and pay for equipment upgrades 

necessitated by the adverse chemical properties of bio-oil.  The necessary upgrades may 

include changing burners, nozzles and storage containers to stainless steel to avoid 

corrosion.  Equation 4.1 includes the valuation method for bio-oil used in this study, 

 

��� � ��� �  
�	
�

�	��
� 90%  (4.1) 

 

                                                 

32 By contrast, ROI values its product based on a 5% discount per unit of energy of the fossil fuel it is 
replacing (Badger, S. 2009a).  This analysis uses the more conservative pricing method that discounts bio-
oil by 10%. 
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where Pbo is the price of bio-oil, Pfo is the price of No. 2 fuel oil, ECbo is the per gallon 

energy content of bio-oil, and ECfo is the per gallon energy content of No. 2 fuel oil.  

Based on a fuel oil price of $2.64 per gallon33 and accounting for differences in energy 

content and a 10% discount, a delivered price of $1.36 per gallon of bio-oil is used in this 

analysis.  With 2,420 gallons of bio-oil for sale each operating day, the mobile plant is 

expected to generate $1.06 million in annual revenue from bio-oil sales. 

Bio-oil delivered price is based on substitution for No. 2 fuel oil and the 

methodology in equation 4.1.  The bio-oil yield per ton of feedstock, weight per gallon, 

energy content per gallon, and No. 2 fuel oil price all impact the delivered price of bio-

oil.  With an average of 22,800 gallons of bio-oil produced per operating day, the fixed 

plant is expected to sell 8.32 million gallons per year.  This translates to annual revenue 

of $11.34 million in bio-oil sales from the fixed plant. 

 

4.4.2 Biochar revenue 

Biochar values and selling prices tend to vary widely.  ROI suggested that values 

range from $60 to $260 per ton depending on the market the biochar is sold in (Badger 

2008).  The Dynamotive (2009) analysis assumed a value of $150 per metric ton 

(equivalent to $136 per US ton) based on the heating value of biochar compared to coal, 

adding that the value could be much higher if it were used for soil improvement and 

carbon sequestration.  Another biochar producer suggested that the soil amendment 

values for biochar range from $100-$500 per ton, and are likely to rise as carbon markets 

                                                 

33 This was the average No. 2 fuel oil price during the 24-month period from September 2007 through 
August 2009 (EIA 2009a).     
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mature and biochar carbon offset projects are developed (Fournier 2009).  Miles (2009) 

suggested a wholesale biochar price of $200 per ton.  Finally, a case study on ‘Large-

scale bioenergy and biochar’ by Joseph and Watts (2009) assumes that biochar is sold in 

horticultural markets for $120 to $180 per metric ton. 

After reviewing these prices, a baseline delivered price of $136 per ton34 was 

chosen for this study.  It was assumed that biochar is sold into regional horticultural 

markets as a soil amendment, though it could also be sold into energy markets if 

sufficient demand is derived.  With 0.27 tons of biochar produced per ton of feedstock 

(McGill 2009a), the mobile plant is expected to yield 6.56 tons of biochar per operating 

day.  This translates to $290,806 in annual revenue from biochar sales.  Biochar revenue 

for the fixed plant is also based on a delivered selling price of $136 per ton.  With 54 tons 

produced per day, annual fixed plant biochar revenue amounted to $2.68 million.   

 

4.4.3 Salvage revenue 

 The financial benefit from salvage revenue was assumed to be realized at the end 

of the 10-year investment period for both the mobile and fixed pyrolysis plants.  Badger 

(2009a) suggested a salvage value equal to 10% of the initial purchase price.  For the 

mobile plant, salvage value in year 10 is equal to 10% of initial capital investment, or 

$345,900.   

For the fixed plant, salvage value was calculated as 10% of the pyrolysis system 

purchase price plus the purchase price of the two loaders, or $1.53 million.  Revenue 

                                                 

34 Equivalent to $150 per metric ton. 



55 

 

from the sale of the land and buildings at the fixed plant is equal to their original 

purchase price in the discounted cash flow model.  As a real (net of inflation) discount 

rate is used, this implies that the value of the land and buildings are assumed appreciate 

in value at a rate equal to the inflation rate during the investment period.  Therefore, a $6 

million financial benefit was added to the $1.53 million salvage value for a total of $7.53 

in salvage and “end of project” revenue at the fixed plant. 
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Chapter 5 

Financial analysis methods 

 

5.1 Introduction 

A discounted cash flow analysis (DCFA) for a 50 BDTPD mobile plant and a 200 

BDTPD fixed-site plant in southwest Oregon was performed in the MS Excel spreadsheet 

software package.  Using the above assumptions and cost and revenue data from chapter 

4, multiple financial performance measures were highlighted for the baseline scenario.  

Sensitivity analyses were performed around several key variables to determine how 

changes in their levels affect the Net Present Value (NPV) of each system.  I rely on 

Dayanda et al. (2002) and Boardman et al. (2006) to describe the discounted cash flow 

analysis (DCFA) method and evaluate financial performance of the pyrolysis 

investments. 

The chapter begins with an overview of DCFA and NPV, including a description 

of the variables and equations used to measure financial performance in this model.   The 

internal rate of return and payback period performance measures are then discussed.  

Finally, the sensitivity analysis and breakeven analysis methods are described.   

 

5.2 Discounted cash flow analysis and net present value 

In DCFA, after tax cash flows are “discounted” in order to reflect the preference 

for current consumption over future consumption.  A discount rate is used to convey this 

preference and discount future cash flows to present value.  A real (net of inflation) 

discount rate of 7% was used in this study.  The appropriate discount rate varies from one 
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firm or entity to another.  The Dynamotive (2009) analysis used a 6% discount rate 

(referred to as “hurdle rate”) and Ringer et al. (2006) used a 10% discount rate, while the 

USDA Forest Service typically uses a 4% discount rate for investments.  All cash flows 

for the life of a project, both positive and negative, are summed in terms of present value 

in order to arrive at NPV for each project.    

Most of the cost items are shared by both the fixed and mobile plant. Table 5.1 

displays the cost and revenue variables described in sections 4.2 and 4.3.  The energy cost 

variable, Ent, includes only the purchased propane used to satisfy 25% of the required 

thermal energy for the mobile plant, as bio-oil will be used for 100% of the mobile plant 

electrical energy.  For the fixed plant, the energy cost variable includes purchased 

propane for 25% of the required thermal energy and purchased electricity to provide 

100% of the required electrical energy. The move-in/setup and annual mobilization and 

costs, denoted by Mobt, are only incurred by the mobile plant.  
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Table 5.1 List of cost and benefit variables 
Variable Variable description 

Costs:        Fint down payment (year 0) + loan payment (years 1-7) 
Lt labor cost 
Feedt prepared feedstock cost 
Loadt loading costs 
Ent purchased propane + purchased electricity cost 
Maintt repair and maintenance cost 
Delt bio-oil + biochar delivery cost 
Inst insurance cost 
Taxt property taxes + income and excise taxes 
Mobt move-in/setup (year 0) + annual mobilization  

(mobile plant only) 

Benefits:    ��
�� delivered price of bio-oil 

��
�� quantity of bio-oil sold 

��
�	  delivered price of biochar 

��
�	 quantity of biochar sold 

         Salvt salvage revenue + sale of additional assets (year 10) 

 

Equations 5.1 and 5.2 summarize the costs and benefits that were ascertained for 

each plant and used to calculate NPV with the subsequent equations.  As shown in 

equations 5.3 through 5.5, NPV is the present value of the benefits minus the present 

value of the costs for a project, where r is the discount rate and t is the year in which the 

costs (C) and benefits (B) occur.  The project length is 10 years, so t varies from 0 to 10.  

The NPV model is the primary model to be used as a decision rule for investment in a 

project (Dayanda 2002).  However, it is wise to use additional measures to check the 

validity of or add robustness to the decision suggested by the NPV measure.  Generally 

speaking, firms should reject projects that have a negative NPV and accept projects with 

a positive NPV.  This does not take into account resource constraints such as access to 

funds for initial capital investment.  Also, when weighing multiple projects, whether the 

projects are mutually exclusive is an important factor.  In some situations adoption of one 
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project precludes adoption of another project, and in others, multiple projects can be 

adopted provided that they each exhibit a positive NPV. 

When interpreting NPV, it is important to realize that an NPV of zero does not 

imply zero profit.  It simply means that the project is expected to generate returns equal 

to the discount rate, which is also assumed to be the minimum acceptable rate of return 

(MAR) for the investor.  Therefore, setting an appropriate discount rate is very important 

in project appraisal, as it is a major factor in determining whether a project will be 

undertaken.  A higher discount rate decreases the likelihood that a project will be 

accepted, while the opposite is true of a lower discount rate.  Positive NPV indicates 

returns above and beyond the MAR and can be thought of as the additional wealth that 

will be generated by undertaking the project, relative to the next best alternative. 
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Both the mobile and fixed pyrolysis plants exhibit a positive NPV in the baseline 

analysis.  The mobile plant NPV is $35,748, and the fixed plant has an NPV of $9.68 

million.  The fixed plant does require a much larger initial capital investment, so it is 
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helpful to look at additional performance criteria prior to ranking the projects.  In 

addition to NPV I also consider the internal rate of return (IRR) and payback period to 

evaluate the financial performance.    

 

5.3 Internal rate of return 

 Internal Rate of Return (IRR) is the discount rate that sets NPV to zero in 

equation 4.1 (Boardman et al. 2006).  Therefore, IRR greater than the discount rate 

corresponds to positive NPV and an IRR less than the discount rate corresponds to 

negative NPV.  The IRR measure can be used to evaluate the financial performance of a 

single project, but it can be misleading if used to compare multiple projects.  The 

decision rule for IRR is to accept projects with an IRR greater than or equal to the chosen 

discount rate.  Thus, the 7.4% mobile plant IRR shows that the mobile plant project is 

acceptable under the IRR criterion, though not by much.  On the other hand, the 20.9% 

fixed plant IRR indicates a more attractive investment that would be acceptable to an 

investor requiring a high 20% return.   

There are drawbacks to using IRR when comparing projects of different size.  For 

example, a small project with a high IRR is not necessarily preferable to a larger project 

with a low IRR, as the larger project could still generate greater value for the firm.  

However, as Dayanda et al. (2002) mention, decision-makers often deal with ‘rates of 

return’, and therefore IRR is helpful because it can be thought of as the rate of return on 

an investment.  Project analysts often use IRR as a complement to NPV when reporting 

financial performance to stakeholders.  I used the IRR function available in MS Excel, 

which iteratively adjusts the discount rate until NPV equals zero.  



61 

 

 

5.4 Payback period 

 Payback period refers to the time it takes for non-discounted cumulative revenue 

to exceed the cumulative costs associated with a project.  The decision rule for this 

measure is to choose the project with the shortest payback period, though results should 

be interpreted with caution.  In this case, the fixed plant has a payback period of six years 

and the mobile plant payback period is nine years.  Therefore, the payback period 

measure further supports the superior financial performance of the fixed plant indicated 

by the NPV and IRR measures.   

Using payback period as a stand-alone financial performance measure is generally 

discouraged (Dayanda et al. 2002; Boardman et al. 2006), though it may be helpful as an 

addition to NPV and IRR.  It may be especially relevant to someone with a very short 

time horizon for an investment, particularly a foreign investment with considerable 

perceived risk.  A downside to reporting payback period is that cash flows are not 

discounted, and therefore the time value of money is not taken into account (Dayanda et 

al. 2002).  For example, if the payback period for a proposed project is six years, but the 

vast majority of the “payback” occurs in the sixth year, this is quite different (and less 

desirable) than a project with a payback period of six years where an equal portion of the 

investment is “paid back” each year.  Also, payback period does not take into account 

what happens during the remaining life of a project after the investment is paid back.  

There could be cleanup costs associated with plant decommissioning at the end of a 

project, which would decrease the attractiveness of the investment.  Or, there could be 

significantly higher net cash flows after payback occurs, which would increase the 
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attractiveness of the investment.  Therefore, while payback period can be helpful as an 

addition to other financial performance measures, giving too much consideration to 

payback period may lead to flaws in the ranking of potential projects.  

 

5.5 Sensitivity analysis 

 Several cost variables were varied by plus and minus ten and thirty percent.  The 

range of plus and minus thirty percent was chosen by examining the plausible amount of 

variation in each parameter.  According to the US Bureau of Labor Statistics, average 

annual pay in the forestry and logging industry in Douglas County, Oregon was $54,331 

for government ownership and $35,342 for private ownership (BLS 2009).  After 

converting these to hourly wages and adding the fringe and benefit rate of 35%, we see 

that labor costs for public ownership are twenty-one percent higher than the baseline rate 

of $29.10 per hour.  Labor costs for private ownership are 21% lower.  Therefore, the 

range of plus and minus ten and thirty percent variation from the baseline should 

adequately capture the range of plausible labor costs. 

 A major determinant of feedstock cost is the haul distance to the pyrolysis plant.  

For the mobile plant, a ten mile roundtrip haul distance and delivered cost of $20.20 per 

BDT has been assumed for the baseline analysis.  Allowing the baseline cost assumption 

to vary by plus and minus ten and thirty percent produces a cost ranging from $14.14 per 

BDT to $26.26 per BDT.  A roundtrip haul of 5.2 miles would produce the lower bound 

cost and a haul of 14.8 miles would produce the upper bound cost.  It is unlikely that a six 

month feedstock supply of thinning from forest restoration and thinning practices would 

be available within an average haul of less than 5.2 miles for the lower bound.  The upper 
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bound price is similar to the rate being paid in Roseburg as of fall 2009 for hog fuel (Pine 

2009).  As one of the goals of mobile pyrolysis is to decrease haul costs and the overall 

cost of feedstock, it is reasonable that the upper bound haul distance should not produce a 

feedstock cost that is higher than the feedstock cost being paid by cogeneration facilities 

in Roseburg.  

 

5.6 Breakeven analysis 

Bio-oil and biochar are the two products that generate annual revenue for the 

project, so it was logical to conduct a sensitivity analysis on the delivered price of each.  I 

believe there is greater uncertainty in the prices of these good and thus consider larger 

pricing variations for the revenue parameters than the cost parameters mentioned above.  

This was done for two reasons—first, to encompass the range of recent observed prices 

for No. 2 fuel oil, which is used to calculate bio-oil price according to equation 4.1.  

Next, to reflect the uncertainty associated with selecting the appropriate baseline 

delivered prices for the revenue generating products of pyrolysis.  Therefore, sensitivity 

analyses were conducted for baseline prices plus and minus thirty and fifty percent for 

bio-oil.  This produced bio-oil delivered prices ranging from $.68 to $2.05 per gallon 

which correspond to $1.36 to $3.95 per gallon for No. 2 fuel oil.  No. 2 fuel oil prices 

fluctuated between $1.55 and $4.02 during the 24-month period that ended with August 

200935.   

                                                 

35See Appendix E for a figure displaying No. 2 fuel oil prices from September 2007 through August 2009. 
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Biochar prices were also varied by plus and minus ten, twenty and fifty percent, 

as well as the extreme prices of $0 and $500 per ton.  A value of $0 per ton was included 

to represent a scenario where the biochar is used as a soil amendment in the areas the 

biomass feedstock was sourced from.  In this case, the biochar delivery cost would 

become the cost associated with applying biochar back to the land.  It has been suggested 

that the impacts of climate change will drive up the price of biochar over time (Fournier 

2009), and therefore the high value of $500 per ton was also included.  

Breakeven parameter levels were identified by using the “goal seek” function in 

MS Excel.  Goal seek allows the user to find the level of one parameter required to 

change another variable, the goal variable, to a level of interest.  In this case, the function 

was used to identify the value of certain parameters that would set NPV to zero.  When 

NPV is zero, the investment breaks even by delivering an IRR equal to the discount rate.  

The discount rate is assumed to be the minimum acceptable rate of return (MAR) for the 

investor, or equal to the rate of return that could be earned on the next best alternative.  

Therefore, breakeven parameter levels are helpful in examining each variable to identify 

the level required for the investment to be undertaken.  
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Chapter 6 

Financial performance of mobile and fixed-site pyrolysis plants 

 

6.1 Introduction 

In this chapter I present the baseline financial performance results of the mobile 

and fixed pyrolysis plants under the baseline assumptions described in the previous 

chapter.  The NPV, IRR, and payback period measures are reported for each plant.  The 

chapter concludes with a discussion of the financial tradeoffs between mobile and fixed 

pyrolysis operations.         

 

6.2 Mobile plant financial performance 

 Table 6.1 details the cash flow and tax burden projections for an in-woods 50 

BDTPD mobile fast pyrolysis plant in southwest Oregon under the assumptions described 

in the preceding chapter.  Year zero can be thought of as the instant before year one 

begins, including the costs incurred prior to the plant commencing operation.  This 

includes a large capital outlay for down payment and initial mobilization costs.  Revenues 

are then constant from year one until the last year of operation, which includes additional 

revenue equal to the salvage value of the plant.  Taxable income increases each year as 

the loan is paid down and a smaller portion of the loan payment is allocated to tax-

deductable interest.  Cash flow and tax due greatly increase during the last three years of 

operation.  This is due to the loan being paid in full which means there are no interest 

payments to deduct from gross revenue to calculate federal taxable income.  
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Table 6.1 Mobile plant cash flow projections, NPV and IRR 

Year 
Costs 

($1000s) 
Revenues 
($1000s) 

Tax due 
($1000s) 

After tax cash 
flow 

($1000s) 

NPV of after 
tax cash 

flow 
($1000s) 

0 1384 0 0 -1384 -1384 
1 1207 1354 14 133 124 
2 1207 1354 21 126 110 
3 1207 1354 31 117 95 
4 1207 1354 42 106 81 
5 1207 1354 54 94 67 
6 1207 1354 67 80 54 
7 1207 1354 81 66 41 
8 795 1354 96 463 270 
9 795 1354 96 463 252 

10 795 1700 261 644 327 

    Project NPV 36 

 
 

 

A project NPV of $35,748 resulted from the discounted cash flow analysis, 

corresponding to a 7.4% Internal Rate of Return (IRR).  This indicates that the project is 

desirable under the NPV measure, as the decision rule only requires that NPV is positive, 

meaning that IRR is greater than the discount rate of 7% used in the baseline analysis.  

With this scenario, a firm would have to be willing to accept returns of 7.4% or less in for 

the project to be accepted. 

Payback period for the mobile plant was calculated by summing the non-

discounted after tax cash flows each year.  Payback is achieved during the year that 

cumulative cash flow changes from negative to positive.  Under the baseline scenario for 

the mobile plant, payback period was nine years.  As the expected operating life of the 

plant is only ten years, a payback period of nine years is not encouraging.  However, the 
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fact that payback does occur during the operational life of the plant means that the project 

should not necessarily be dismissed.      

  

6.3 Fixed plant financial performance 

 The before and after tax cash flow projections of a fixed 200 BDTPD plant 

located in Glide, Oregon are summarized in table 6.2.  Taxable income and tax due 

exhibit an upward trend, with a significant increase at the end of the investment period 

due to diminishing tax-deductable interest payments and the addition of salvage revenue 

at the end of year ten. 

 
 
Table 6.2 Fixed plant cash flow projections, NPV and IRR 

Year 
Cost 

($1000s) 
Revenue 
($1000s) 

Tax due 
($1000s) 

After tax 
cash flow 
($1000s) 

NPV of after 
tax cash 

flow 
($1000s) 

0 9702 0 0 -9,702 -9,702 
1 10,428 14,018 1,562 2,028 1,895 
2 10,428 14,018 1,620 1,970 1,720 
3 10,428 14,018 1,683 1,907 1,556 
4 10,428 14,018 1,752 1,838 1,402 
5 10,428 14,018 1,827 1,763 1,257 
6 10,428 14,018 1,908 1,682 1,121 
7 10,428 14,018 1,997 1,593 0,992 
8 7,536 14,018 2,094 4,387 2,554 
9 7,536 14,018 2,094 4,387 2,386 

10 7,536 21,543 5,156 8,851 4,500 

    Project NPV 9681 
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Investment in the fixed plant project appears to be quite attractive, with an NPV 

of $9.68 million and an IRR of 20.9%.  This implies that a potential investor would see 

this project as worthy of investing in, provided that the investor’s MAR is less than 21%.     

After a large initial cash outlay at the start of a project, it often takes several years for a 

project to exhibit positive cumulative cash flow.  This is the case with the fixed pyrolysis 

plant, even though it exhibits healthy annual after tax cash flow.  In the baseline scenario 

for the fixed plant, cumulative cash flow changes from negative to positive in the sixth 

year of operation, so the payback period is six years.   

 
 
6.4 Sensitivity analysis 

 Next I present the results of the sensitivity analysis relative to the baseline results 

already mentioned in the previous section.  The sensitivity analysis was performed by 

allowing variation in some of the key cost and revenue assumptions of the model.  If the 

NPV rule continues to be satisfied under different scenarios then the results of the model 

would provide robust support of the financial feasibility of these pyrolysis plants.  I 

present the effects of variation of those variables to which the financial feasibility is most 

sensitive.  

 I begin by focusing on the mobile plant sensitivity analysis and follow with the 

fixed plant.  For each plant, I first discuss several important cost variables.  Then, the 

impact of variation in bio-oil and biochar delivered prices on financial performance is 

addressed, with break even prices determined.  The NPV measure is the dependent 

variable in each scenario of the sensitivity analysis.   
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6.4.1 Mobile plant sensitivity analyses 

 The baseline NPV for the mobile plant is positive and therefore acceptable under 

the NPV decision rule.  However, at just $35,748, the project NPV is only marginally 

acceptable at a 7% discount rate.  Adjusting the level of any variable that impacts 

financial performance could quickly change the investment outlook of the project from 

acceptable to undesirable.  Following is a discussion of the sensitivity of mobile plant 

financial feasibility to several cost variables and the two revenue variables—bio-oil and 

biochar prices. 

 Varying the level of initial capital investment was found to have a large effect on 

NPV for the mobile plant, as shown in section A.1 of Appendix A.  Increasing the mobile 

plant initial capital investment by 30% from $3.46 million to $4.50 million decreased 

NPV from $35,748 to -$815,462.  On the contrary, if the initial capital investment were 

30% lower, the mobile plant returns would be significantly higher at $735,995.   

 Of the annual operating costs in figure 6.1, NPV of the mobile plant project is 

most sensitive to labor costs.  Of the selected cost variables displayed in the figure, the 

next most important variable is feedstock cost, followed by interest rate on borrowed 

funds, bio-oil delivery cost, and finally, biochar delivery cost.  
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Figure 6.1 Mobile plant NPV sensitivity to several important cost variables 

   

 

 

 Labor costs represent the largest share of annual costs for the mobile plant.  

Therefore, changes in wage and benefit rate used to calculate labor costs have a dramatic 

effect on NPV and those costs deserve significant attention.  It is worthwhile to further 

examine the method used to determine baseline wages and labor hours needed.  An 

interested party could look at the baseline wage and benefit rate and investigate how that 

rate may change in real (inflation adjusted) terms over the 10-year operating period of the 

plant by consulting the Bureau of Labor Statistics website to look at trends in forestry and 

natural resource professions.  By using a real discount rate, wages are implicitly assumed 

to rise with inflation during the investment period.  However, if wages in this 

employment sector rise more rapidly than the rate of inflation, the baseline wage and 
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benefit rate used in this analysis would have underestimated labor costs and led to overly 

optimistic financial performance results.   

The required labor to operate the plant should be carefully considered as well.  If 

further research leads to a belief that the projected amount of labor hours are more than 

enough, an investor can have more confidence in proceeding with the project.  If further 

investigation suggests that labor costs and required labor were estimated too 

optimistically in the base case with respect to financial performance, caution in 

proceeding with the project should be exercised.  

 Feedstock costs are the next cost variable to investigate, though they have 

significantly less impact on the financial performance of the mobile pyrolysis plant than 

labor costs.  A prospective stakeholder should revisit the feedstock cost estimation 

method discussed in section 4.3.2.  An average feedstock haul of five miles each way was 

assumed for the mobile plant.  Additional expert opinions could be gathered to check the 

robustness of that assumption.  The average speed and hourly haul cost assumptions can 

also be further examined.  If the methods employed to estimate feedstock cost prove to be 

relatively conservative after additional examination, the project can be embarked upon 

with confidence. 

 Adjusting the interest rate on borrowed funds does not have an extreme effect on 

mobile plant financial performance.  However, it would be wise to consult with a 

commercial lender to verify the interest rate that would likely be offered for such an 

endeavor.  Of the selected cost variables, product delivery costs have the least impact on 

NPV.  Provided that stakeholders are confident that the plausible range of delivery costs 
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is captured in the sensitivity analysis, those costs should not require much additional 

investigation.   

Figure 6.2 displays the impact of bio-oil and biochar prices on NPV of the mobile 

pyrolysis plant.  The greater influence of fuel oil—and therefore bio-oil price—on NPV 

of the project is not surprising because bio-oil output is more than twice that of biochar as 

a proportion of feedstock weight.   

 
 
Figure 6.2 Mobile plant NPV sensitivity to bio-oil and biochar prices 

 
 

 
It can also be insightful to consider the effect on NPV when multiple parameters 

change simultaneously.  Several pricing scenarios for bio-oil and biochar are presented in 

table 6.3, including the extreme values of $0 and $500 per ton for biochar.  If bio-oil 

price were calculated based on No. 2 fuel oil prices seen in the mid-2008, the mobile 

plant investment would exhibit positive NPV even with zero revenue from biochar sales.  
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However, a slight decrease from the baseline bio-oil or biochar prices would cause NPV 

to become negative for the mobile pyrolysis project.  If biochar were applied back to the 

landscape, represented by the $0 value for biochar, NPV would be -$1.51 million at the 

baseline bio-oil price.  In this case, a financial incentive for applying biochar to the land, 

perhaps from carbon offset markets, would be necessary for the mobile plant to be 

financially viable. 

 

Table 6.3 Mobile plant NPV under multiple pricing scenarios for bio-oil and biochar 
 Bio-oil price per gallon ($) 

 
 
 
 
 
Biochar 
price per  
ton ($) 

 0.68 0.95 Base=1.36 1.77 2.04 

0 -$5,172,632 -$3,708,689 -$1,512,774 $139,700 $865,555 

68 -$4,166,700 -$2,702,757 -$630,637 $649,589 $1,424,286 

95 -$3,764,328 -$2,300,384 -$345,383 $849,728 $1,663,295 

Base=136 -$3,160,768 -$1,696,825 $35,748 $1,152,227 $2,021,809 

177 -$2,557,209 -$1,093,266 $370,008 $1,510,741 $2,380,324 

204 -$2,154,836 -$757,194 $559,257 $1,749,751 $2,619,333 

500 $910,210 $1,741,989 $3,046,362 $4,350,736 $5,220,318 

 
Note: Baseline NPV in bold 

 
 

6.4.2 Fixed plant sensitivity analyses 

 The 200 BDTPD fixed plant in this study exhibited attractive returns in the 

baseline scenario.  With a project NPV of $9.68 million and an IRR of 20.9%, the fixed 

plant baseline results would likely be enticing to a potential investor.  The after-tax 

financial performance is high enough that many variables could be sequentially changed 

to the most pessimistic of plausible values without causing project NPV to fall below 
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zero.  This suggests that the NPV decision rule is robust and can be used with confidence.  

However, reviewing sensitivity analyses on selected variables will help potential 

stakeholders make informed decisions regarding the risk involved with investing in a 

fixed-site pyrolysis plant.  The following two sections illustrate how varying several 

important cost variables and bio-oil and biochar delivered prices impact financial 

performance of the fixed pyrolysis plant. 

 The level of initial capital investment also has a large effect on NPV of the fixed 

plant investment, as shown in section A.2 of appendix A.  If the initial investment was 

30% higher at $31.53 million instead of the baseline of $24.26 million the NPV of the 

investment would be significantly lower, at 1.90 million.  Alternatively, if required initial 

capital investment was 30% lower than baseline at $16.98 million, NPV would rise to 

$17.46 million.   

Figure 6.3 shows how the NPV of the fixed plant changes as important cost 

variables are adjusted by plus and minus ten and thirty percent.  While labor costs were 

the most important operating costs for the mobile plant, feedstock costs are largest factor 

for the fixed plant.  Labor costs are second, followed by bio-oil delivery cost, interest rate 

on borrowed funds, and biochar delivery cost.  In all cases the NPV continues to be 

greater than $5.96 million.  
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Figure 6.3 Fixed plant NPV sensitivity to several important cost variables 
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However, if bio-oil price were 20% below baseline at $1.08, approximately the price it 
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would only even.     

$5,000,000

$6,000,000

$7,000,000

$8,000,000

$9,000,000

$10,000,000

$11,000,000

$12,000,000

$13,000,000

$14,000,000

-30% -10% Base 

case

+10% +30%

N
P

V
 o

f 
af

te
r 

ta
x 

ca
sh

 f
lo

w
s

Change in parameter level

Feedstock Cost

Labor costs

Interest rate on 

borrowed funds

Bio-oil delivery 

cost to market 

(Portland, OR)

Biochar delivery 

cost to market



76 

 

Figure 6.4 Fixed plant NPV sensitivity to bio-oil and biochar prices 
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oil prices were adjusted by plus and minus thirty and fifty percent.  While biochar prices 

are also adjusted by plus and minus thirty percent, the extreme prices of $0 and $500 per 

ton are included as well.  The impact of biochar price on NPV is less significant than that 

of bio-oil, though is interesting to see that the fixed plant still requires a positive price for 

biochar in conjunction with baseline bio-oil price in order for the investment to be 

acceptable under the NPV decision rule.   

 
 

-$20,000,000

-$10,000,000

$0

$10,000,000

$20,000,000

$30,000,000

$40,000,000

-50% -20% -10% Base 

case

+10% +20% +50%

N
P

V
 o

f 
af

te
r 

ta
x 

ca
sh

 f
lo

w
s 

($
)

Change in parameter level

Bio-oil 

price

Biochar 

price



77 

 

Table 6.4 Fixed plant NPV under multiple pricing scenarios for bio-oil and biochar 
 Bio-oil price per gallon ($) 

 
 
 
 
 
Biochar 
price per  
ton ($) 

 0.68 0.95 Base=1.36 1.77 2.04 

0 -$33,649,774 -$17,982,780 -$1,331,357 $12,621,125 $21,907,283 

68 -$24,377,412 -$10,012,750 $4,179,915 $18,122,197 $27,388,222 

95 -$20,668,467 -$7,542,943 $6,380,344 $20,319,761 $29,580,598 

Base=136 -$15,105,049 -$4,275,082 $9,680,987 $23,608,324 $32,919,529 

177 -$10,599,710 -$960,652 $12,981,630 $26,896,887 $36,248,368 

204 -$8,051,963 $1,239,776 $15,182,059 $29,089,263 $38,414,392 

500 $15,890,765 $25,164,957 $39,112,017 $52,812,154 $61,587,068 

 

Note: Baseline NPV in bold 

 

6.4.3 Mobile plant breakeven values 

 In this section I address the breakeven parameter values for a few parameters that 

are important in determining the financial performance of the mobile plant.  I start with 

the two cost parameters that have greatest impact on financial performance, and then 

move on to the breakeven levels for bio-oil and biochar prices.    

The breakeven labor cost per employee for the mobile plant is $29.84, as opposed 

to $29.10 in the baseline scenario.  An hourly labor cost of $29.84 per employee would 

result in annual labor costs of $353,888, NPV of $0 and IRR of 7% for the mobile plant.  

Only a slight increase in feedstock cost to $21.43, relative to the baseline level of $20.20 

per BDT, is required to move the mobile plant investment to the breakeven level.   

As the majority product of pyrolysis that represents the largest portion of revenue, 

bio-oil price adjustments have a major impact on financial performance.  Breakeven bio-

oil price is $1.35 per gallon, only one cent lower than the baseline level.  The delivered 

breakeven price for biochar is $132 per ton, $4 less than the baseline value. 
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6.4.4 Fixed plant breakeven values       

  The fixed plant has a higher NPV and IRR in the baseline scenario, meaning that 

larger adjustments in parameter levels are required to bring NPV to $0 and determine 

breakeven values.  The fixed plant breakeven values for feedstock costs, labor costs, bio-

oil and biochar prices are now presented. 

 Feedstock cost is the most important operating cost parameter for the fixed plant, 

as shown in figure 6.2.  The breakeven feedstock cost is $80.69 per BDT, representing a 

78 percent increase from the baseline value of $45.33 per BDT.  The baseline scenario 

assumed a two-phase feedstock haul with a 10 mile roundtrip in the first phase and a 90 

mile roundtrip for the second phase.  The breakeven cost could be generated if the first 

phase was increased to a 38 mile roundtrip, the second phase was increased to a 231 mile 

roundtrip, or some combination of the two.  Labor costs are the second most important 

cost variable mentioned above.  However, due to economies of scale at the larger facility 

labor costs have considerably less impact on financial performance than they do for the 

mobile plant.  The breakeven labor cost per employee for the fixed plant is $92.93 per 

hour.   

 Bio-oil breakeven price for the fixed plant is $1.08 per gallon, a 21% reduction 

from the baseline of $1.36 per gallon.  The lower impact that biochar has on financial 

performance means that its delivered price must be adjusted by a larger amount to reach 

the breakeven level.  The fixed plant has a breakeven biochar price of $16 per ton, 

compared to the baseline price of $136 per ton, showing that even though financial 
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performance of the fixed plant is strong, the fixed plant investment is not profitable 

unless it is able to sell both bio-oil and biochar.   
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Chapter 7 

Conclusion 

 

This study has shown the expected financial performance of two potential 

pyrolysis plant configurations in southwest Oregon that could use forest biomass as 

feedstock.  The feasibility of a mobile 50 BDTPD mobile plant was compared with that 

of a 200 BDTPD fixed-site plant using a discounted cash flow analysis model created in a 

spreadsheet software package.  Net present value (NPV), internal rate of return (IRR) and 

payback period were calculated for each plant.   

Baseline results showed that the mobile plant would generate an NPV of $35,748, 

an IRR of 7.4% and a payback period of 9 years.  With a discount rate of 7% in the 

baseline scenario, the financial performance of the mobile plant is only marginally 

acceptable.  The fixed plant showed superior returns under each of the financial 

performance measures, with NPV, IRR and payback period of $9.68 million, 20.9%, and 

6 years, respectively.   

Sensitivity analyses on cost and revenue parameters were conducted with respect 

to several cost and revenue variables.  This revealed that the two most important 

operating cost parameters for both plants are labor costs and feedstock costs.  However, 

labor costs are much more important for the mobile plant, while feedstock costs are the 

most important cost parameter for the fixed plant.  This was not surprising, as labor costs 

represent the largest share of operating costs for the mobile plant and feedstock costs are 

the largest share of costs for the fixed plant.  Economies of scale with respect to labor at 
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the fixed plant suggest that an increase in real labor costs would have less of an impact on 

overall financial performance. 

Finally, the delivered prices for bio-oil and biochar were varied for each plant to 

determine the breakeven levels.  Baseline prices were $1.36 per gallon of bio-oil and 

$136 per ton of biochar for both plants.  The mobile plant breakeven level was only 0.7% 

lower at $1.35 per gallon and the fixed plant breakeven level was 21% lower at $1.08 per 

gallon.  Biochar breakeven prices were determined to be $132 per ton for the mobile 

plant, a 3% decrease from the baseline, and $16 per ton for the fixed plant, an 88% 

reduction from the baseline.  This showed that even with fairly high returns in the 

baseline scenario, the fixed plant would only be financially viable if it is able to earn 

positive revenues from both bio-oil and biochar.   

This study was conducted to aid stakeholders in understanding the determinants 

of financial performance of fast pyrolysis plants using forest residues as feedstock.  It is 

necessary to keep in mind that the social benefits of the pyrolysis plants have not been 

accounted for in this analysis, but they could be very important.  Potential benefits 

include increasing the viability of fuel treatments for ecosystem restoration and decreased 

risk of catastrophic fire, especially in the wildland-urban interface (Stetler 2008; 

O’Donnell 2009).  Possible reductions in CO2, nitrous and sulfur oxides, and particulate 

emissions, relative to fossil fuels, should also be considered by stakeholders.  Reduced 

dependency on foreign energy is an additional benefit that is important to policy makers 

but has not been quantified in this analysis.   

The analysis could be used as a starting point for determining the financial 

feasibility of a potential project and it can be assumed that any available investment 
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incentives or preferential legislation would improve the investment outlook.  Market 

conditions for substitute products (fuel oil, coal, soil amendments) are very important to 

financial performance and could either improve or decrease the attractiveness of the 

investments compared to the scenarios presented in the results chapter.   

It is wise to consider the results of this analysis while taking several caveats into 

account as well.  Many of the input data used in the financial model that analyzed the 50 

and 200 BDTPD pyrolysis plants were obtained from ROI.  However, ROI has not yet 

manufactured a plant larger than 15 BDTPD.  Therefore, there could be unforeseen 

challenges and costs associated with scaling up the technology that were not captured by 

this analysis.   

While researchers and firms have been developing fast pyrolysis technology for 

multiple decades, it is a relatively young industry and so far there is not a particular plant 

configuration or reactor technology is obviously superior to others.  Also, markets for 

bio-oil and biochar are not well-developed.  Due to the acidic and corrosive nature of bio-

oil, it is uncertain whether the 10% discount on a per MMBtu basis would induce 

consumers to switch from No. 2 fuel oil to bio-oil.  If bio-oil pricing was based on a 

lower quality fuel such as No. 6 fuel oil, or ‘bunker fuel’, financial performance of the 

investments would suffer significantly.  This represents a risk that a potential investor 

would need to consider.  The risk of a much larger capital investment for the fixed plant 

should also be taken into account.  The larger capital investment required for the fixed 

plant may justify the use of a higher, risk-adjusted discount rate.       

Further research on GHG emissions from mobile and fixed site pyrolysis plants is 

recommended, as well as the benefits associated with fossil fuel switching and carbon 
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sequestration in soils.  The potential non-market benefits from implementing pyrolysis of 

forest biomass on a broad scale, such as avoided deforestation and improved soils, are 

also intriguing and important areas of additional research.         
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Appendix A 
 

Additional sensitivity analyses 
 

A.1 Mobile plant sensitivity analyses  
 
(baseline values in bold) 
 
Initial capital investment 
Parameter level $2,421,300 $3,113,100 $3,459,000 $3,804,900 $4,496,700 

NPV  $736,995 $283,188 $35,748 -$231,724 -$815,462 

 
Hourly labor cost per employee 
Parameter level $20  $26  $29.10  $32  $37.83 

NPV $414,986 $171,657 $35,748 -$109,076 -$429,916 

 
Discount rate 
Parameter 
level 

4.0% 5.5% 7.0% 8.5% 10.0% 11.5% 13.0% 

NPV $343,229 $179,366 $35,748 -$90,477 -$201,717 -$300,015 -$387,106 

 
Scheduled hours per day 
Parameter level 8 9 10 11 12 

NPV -$1,047,754 -$746,594 -$463,086 -$200,855 $35,748 

 
Moves per year 
Parameter level 1 2 4 7 10 

NPV $54,135 $35,748 -$1,430 -$59,297 -$118,696 

 
Energy cost (propane, $/gallon) 
Parameter level $1.60  $2.05  $2.28  $2.51  $2.96  

NPV $117,230 $63,133 $35,748 $8,237 -$49,000 

 
Bio-oil yield (% of feedstock weight, assuming 10% moisture content in feedstock) 
Parameter 
level 

55.0% 56.0% 57.0% 58.0% 59.0% 60.00% 

NPV -$46,726 -$4,750 $35,748 $75,745 $115,139 $153,865 
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Energy content of bio-oil (MMBtu/gallon) 
Parameter level 0.0750 0.0775 0.0800 0.0825 0.0850 

NPV -$292,301 -$122,386 $35,748 $183,452 $327,614 

 
Percentage of initial capital investment borrowed 
Parameter level 42% 54% 60% 66% 78% 

NPV -$6,886 $23,030 $35,748 $46,148 $60,477 

 
Feedstock average roundtrip distance (miles) 
Parameter level 7 9 10 11 13 

NPV $142,334 $71,776 $35,748 -$662 -$76,301 

 
Pyrolysis system generator efficiency 
Parameter level 21.0% 27.0% 30.0% 33.0% 39.0% 

NPV -$244,003 -$33,173 $35,748 $90,660 $172,667 

 

 
 
A.2 Fixed plant sensitivity analyses  
 
(baseline values in bold) 

 
Initial capital investment 
Parameter level $16,979,200 $21,830,400 $24,256,000 $26,681,600 $31,532,800 

NPV $17,460,190 $12,274,055 $9,680,987 $7,087,919 $1,901,783 

 
Hourly labor cost per employee 
Parameter level $20  $26  $29.10  $32  $37.83 

NPV $11,005,119 $10,122,364 $9,680,987 $9,239,610 $8,356,855 

 
Discount rate 
Parameter 
level 

4.0% 5.5% 7.0% 8.5% 10.0% 11.5% 13.0% 

NPV $13,591,424 $11,510,971 $9,680,987 $8,066,592 $6,638,282 $5,371,028 $4,243,539 

 
 
 
 
 
  



95 

 

Scheduled operating days 
Parameter level 275.0 305.0 335.0 365.0 

NPV $488,686 $3,552,786 $6,616,886 $9,680,987 

 
Scheduled hours per day 
Parameter level 16 18 20 22 24 

NPV -$2,757,579 $361,015 $3,467,672 $6,574,330 $9,680,987 

 
Energy cost (propane, $/gallon) 
Parameter level $1.60  $2.05  $2.28  $2.51  $2.96  

NPV $11,257,386 $10,214,181 $9,680,987 $9,147,793 $8,104,587 

 
Bio-oil yield (% of feedstock weight, assuming 10% moisture content in feedstock) 
Parameter 
level 

55.00% 56.00% 57.00% 58.00% 59.00% 60.00% 

NPV $8,780,294 $9,230,641 $9,680,987 $10,131,333 $10,581,679 $11,032,025 

 
Energy content of bio-oil, MMBtu/gallon 
Parameter level 0.0750 0.0775 0.0800 0.0825 0.0850 

NPV $6,772,728 $8,226,858 $9,680,987 $11,135,116 $12,589,245 

 
Percentage of initial capital investment borrowed 
Parameter level 42% 54% 60% 66% 78% 

NPV  $9,425,343 $9,595,772 $9,680,987 $9,766,201 $9,936,630 
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Appendix B 
 

Cost parameter tables 
 

Table B.1 Mobile plant delivered feedstock costs  
Parameter Level  

Biomass stumpage ($/ton at 30% moisture content) 0.09a 

Haul cost ($/hr) 110b 

Speed (mph) 10c 

Average roundtrip haul distance (miles) 10c 

Truck capacity (tons) 12.5c 

Annual delivered feedstock  
(tons @ 30% moisture content) 

10,182d 

Annual delivered feedstock (BDT equivalent) 7,128d 

Annual feedstock haul costs ($) 89,604d 

Chipping cost ($/BDT) 7.50e 

Annual chipping cost 53,460e 

Annual prepared feedstock cost 143,978e 

 

Sources: a) Curtis (2009) b) Chung 2009 c) author’s estimate d) Dykstra (2009) e) spreadsheet calculation 

 

Table B.2 Mobile plant feedstock loading costs (Caterpillar 262 Skid Steer) 
Parameter Level 

Bucket size (cubic yards) 1a 

Buckets per ton of feedstock 4b 

Cycles per hour 40a 

Feedstock density (pounds/yard3) 500c 

Fuel consumption (gal/hr) 2d 

Operating hours per day 3.1b 

Annual fuel cost ($) 5,437b 

Annual tire replacement cost ($) 2,444a 

Annual maintenance cost ($) 2,445a 

Total annual loader costs ($) 10,326b 

 

Sources: a) Herzog (2009). b) spreadsheet calculation. c) McGill (2009a) d) CAT (2007). 
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Table B.3 Mobile plant energy consumption and costs 
Parameter Level 

Thermal energy cost (propane, $/gal) 2.28a 

Thermal energy required (MMBtu/hr) 3.22b 

Percentage of thermal energy purchased for mobile plant 25b 

Propane energy content (MMBtu/gal) 0.091a 

Purchased thermal energy (propane, gal/hr) 8.81c 

Annual cost for purchased energy ($) 68,109c 

 
Sources: a) EIA (2009c). b) Badger (2009a) c) spreadsheet calculation  

 
 
Table B.4 Mobile plant bio-oil delivery costs  
Parameter Level 

Gallons sold per year 780,642a 

Transport cost in cents/gallon .1122b 

Annual fuel delivery cost $87,588a 

 
Sources: a) spreadsheet calculation. b) Dirksen (2009)  

 
 
Table B.5 Mobile plant biochar delivery costs 
Parameter Level 

Trucking cost ($/hr) 75a 

Truck capacity (tons) 27.5a 

Round trip biochar haul to market (hrs)  5b 

Cost of one round trip delivery ($) 375a 

Annual tons of biochar to market 2138c 

Annual biochar delivery cost ($) 29,158c 

 

Sources: a) Whitaker (2009). b) author’s estimate. c) spreadsheet calculation       
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Table B.6 Fixed plant initial capital investment  
Parameter Level 

Pyrolysis system ($) 15,000,000a 

Land ($) 2,000,000b 

Building ($) 4,000,000a 

Outside improvements ($) 2,000,000a 

Loader cost (2 loaders at $128,000 each) ($) 256,000c 

Non-pyrolysis building contents ($) 1,000,000a 

Total capital investment ($) 24,256,000c 

 
Sources: a) author’s estimate. b) Nelson (2009). c) Carter (2009)   

 
 
Table B.7 Fixed plant investment and financing costs 
Parameter Level 

Initial Capital Investment ($) 24,256,000a 

Down Payment ($) 9,702,400a 

Interest Rate on Borrowed Funds (%) 9b 

Term of Loan (years) 7b 

Annual Loan Payment ($) 2,891,662a  
 
Sources: a) spreadsheet calculation. b) Badger (2009a); Lewis (2009).  
 
 
Table B.8 Fixed plant labor costs 
Parameter Level 

Average hourly wage including fringe ($) 29.10a 

Annual hours paid per employee 2080b 

Average # of employees per operating hour 4.6c 

Number of employees 17.5c 

Annual labor cost ($) 1,059,240c 

 

Sources: a) BLS (2009a) b) 40hours per week, 52 weeks per year. c) based on Farag et al. (2002).  See 
Appendix C. d) spreadsheet calculation 
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Table B.9 Fixed plant delivered feedstock costs  
Parameter Level  

Biomass stumpage ($/ton at 30% moisture content) 0.09a 

In-woods haul cost to concentration yard ($/hr) 110b 

 Speed (mph) 10c 

 Average roundtrip haul distance (miles) 10c 

 Truck capacity (tons) 12.5c 

Haul cost from concentration yard to fixed plant ($/hr) 110b 

 Speed (mph) 25c 

 Average roundtrip haul distance (miles) 90c 

 Concentration yard handling cost ($/BDT) 2.5c 

Annual delivered feedstock (tons @ 30% moisture content) 93,857d 

Annual delivered feedstock (BDT equivalent) 65,700d 

Annual feedstock haul costs ($) 2,476,890d 

Chipping cost ($/BDT) 7.50e 

Annual chipping cost 492,750d 

Annual delivered feedstock cost 2,978,087d 

 
Sources: a) Curtis (2009) b) Chung (2009) c) author’s estimate d) spreadsheet calculation e) Dykstra (2009)  
 

Table B.10 Fixed plant feedstock loading costs (Caterpillar 914G Wheel Loader) 
Parameter Level 

Bucket size (cubic yards) 4a 

Buckets per ton of feedstock 1b 

Cycles per hour 40a 

Fuel consumption (gal/hr) 2.25c 

Operating hours per day 6.3d 

Annual fuel cost ($) 13,885b 

Annual tire replacement cost ($) 4,067a 

Annual maintenance cost ($) 5,390a 

Total annual loader costs ($) 23,342d 

 

Sources: a) Carter (2009). b) spreadsheet calculation. c) CAT (2007). d) spreadsheet calculation.   
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Table B.11 Fixed plant energy consumption and costs 
Parameter Level 

Thermal energy cost (propane, $/gal) 2.28a 

Thermal process energy required (MMBtu/hr) 25.78b 

Thermal energy purchased (%) 25b 

Propane energy content (MMBtu/gal) 0.091c 

Purchased thermal energy consumption for fixed plant (propane, gal/hr) 70.57d 

Electrical energy cost ($/kWh) 0.0474e 

Electrical energy required (MMBtu/hr) 2.99b 

Energy content of electricity (MMBtu/kWh) 0.003412c 

Electrical energy purchased for fixed plant (%) 100f 

Annual thermal and electrical energy purchased ($) 1,595,941d 

 

Sources: a) EIA 2009a. b) Badger (2009a). c) EIA (2009c).  d) spreadsheet calculation.  
e) EIA (2009. f) McGill (2009b) 

 
 
Table B.12 Fixed plant bio-oil delivery costs 
Transport cost parameter Level 

Annual bio-oil sales (gal) 8,322,000a 

Transport cost ($/gal) .0872b 

Annual fuel delivery cost ($) 725,678a 

 

Sources:  a) spreadsheet calculation. b) Dirksen (2009) 

 
 
Table B.13 Fixed plant biochar delivery costs 
Parameter Level 

Trucking cost ($/hr) 75a 

Truck capacity (tons) 27.5a 

Round trip biochar haul to market (hrs)  5b 

Cost of one round trip delivery ($) 375c 

Number of truckloads/year 717c 

Annual biochar delivery cost ($) 268,773c 

 

Sources: a) Whitaker (2009). b) author’s estimate. c) spreadsheet calculation. 
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Appendix C 

 
Fixed plant wages and benefits 

 
 
The 2002 Farag et al. study assumed 9 employees are required for a facility 

processing 100 metric tons of wood chips per day at 45% moisture content, and 12 and 

15 employees for a 200 and 400 wet metric ton/day plants, respectively.  I converted 200 

wet metric tons per day to 121.2 BDTPD, and 400 wet metric tons per day to 242.4 

BDTPD.  To convert metric tons to US tons, I multiplied by the conversion factor 1.102, 

and to convert from 45% moisture content to BDT (0% moisture content), I multiplied 

that result by 1-moisture content, or 0.55.  Equation:  (200*1.102) * (1-0.45) = 121.2.   

This means that as the plant increased in size from 121.2 BDTPD to 242.4 

BDTPD, one additional employee was added for every additional 40.4 BDTPD.  As I am 

evaluating a 200 BDTPD plant, I added two employees to the 12 required for the 121.2 

BDTPD plant and assumed 14 employees are required for the 200 BDTPD plant.  Farag 

et al. also assumed an additional 4 “non-production employees” with a total wage and 

benefit bill (including 30% overhead) of $176,786 for the 400 wet metric ton plant.  I 

reduced that figure to 3.5 employees for a 200 BDTPD plant36, subtracted the overhead 

rate, and converted from 2002 to 2008 dollars using the BLS CPI Inflation Calculator 

(BLS 2009c).  I then added the 35% fringe rate used in this study and added that to the 

total wage and benefit bill including fringe.  The total wage and benefit bill was then 

converted to an average hourly labor cost of $30.51 per employee for the 17.5 full-time 

                                                 

36 According to Farag et al. (2002), 2 non-production employees are required for a 200 wet metric ton plant 
(equivalent to 121.2 BDTPD) and 4 are required for a 400 wet metric ton plant (equivalent to 242.4 
BDTPD).  Therefore, I assume 3.5 non-production employees are required for a 200 BDTPD plant. 
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equivalent employees at the 200 BDTPD plant.  As this hourly rate was fairly close to the 

rate of $29.10 used for the mobile plant analysis and based on wages in Douglas County, 

Oregon, I elected to use the $29.10 rate as a baseline wage and benefit rate for both the 

mobile and fixed plants.   



103 

 

Appendix D 
 

U.S. Corporation Income Taxes 
 

   
  Table D.1 Federal tax rate schedule for 2008 

 
 
  Source: IRS (2009) 

  

If taxable income is:

Over -- But not over -- Tax is -- of the amount over --

$0 $50,000 15% $0

$50,000 $75,000 $7,500 + 25% $50,000

$75,000 $100,000 $13,750 + 34% $75,000

$100,000 $335,000 $22,250 + 39% $100,000

$335,000 $10,000,000 $133,900 + 34% $335,000

$10,000,000 $15,000,000 $3,400,000 + 35% $10,000,000

$15,000,000 $18,333,333 $5,150,000 + 38% $15,000,000

$18,333,333 --------------- 35% $0



104 

 

Appendix E 
 

Recent No. 2 fuel oil prices 
   
 
 
  Figure E.1 U.S. No. 2 distillate price by all sellers, Sep 2007-Aug 2009 

 
 

Source: EIA (2009d) 
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